
Application and Systems Performance:
 Academic Research Overview

LACSI Priorities and Strategies
Workshop 2005

John Mellor-Crummey
Department of Computer Science

Rice University

2

Immediate Impact in Support of ASC Mission Goals

Long Term Research Affecting Future HPC Systems

Performance diagnosis tools

Hand application of
aggressive transformations
to important codes

Compilation for hybrid
architectures

Source-to-source
transformation tools

High-level data-parallel
programming systems

Fundamental compiler
algorithms

Detailed performance
modeling of applications

Compilation techniques
for SPMD languages

LACSI Compiler and Tools Research Portfolio

Open source compilers

Low-overhead measurement
of large-scale systems

3

Performance Modeling
• Understand interplay between node program and microprocessor

architecture
—measure application-specific factors

– static analysis
– dynamic analysis

—construct models of computation and memory hierarchy performance
– instruction dependences
– memory hierarchy miss rates and latencies

— identify impediments and enablers for high performance

• Publications
—SIGMETRICS 2004: arch. independent modeling node performance
—SC2004 poster: modeling memory hierarchy behavior of sci. appl.

4

Execution Behavior: Sweep3D

Predicted from optimized SPARC binaries!

5

Collaboration
• Joint workshops

—Performance and productivity of extreme-scale systems
– (LACSI Symposium, October 2004)

—Performance analysis and modeling (Rice, October 2004)

• Ongoing interactions
—Who

– Lubeck, Fowler, Kennedy, Marin, Mellor-Crummey
—What

– use hardware performance counters to measure the impact of
memory hierarchy on application performance

– explore regression and queuing models based on measured data
– validate Rice predictive modeling of memory hierarchy

6

Performance Analysis
• Long-term compiler and architecture research requires detailed

performance understanding
— identify sources of performance bottlenecks in complex applications
—discover automatic strategies for performance improvement
—understand the mismatch between application needs and

architecture capabilities

• Short-term result: Programmer-accessible tools for
understanding application performance

7

Performance Analysis Tools
• Flat profiling: HPCToolkit

—deployed new multiplatform release: Linux, Irix, Tru64
—deployed process-based profiling on Lightning (bproc cluster)
— improved binary analysis performance 70-80% for large Linux appl
—SC04 tutorial: Application performance analysis on Linux

• Call stack profiling
—collect information about where time is spent and call chain context
—results: a sample-driven call-stack profiler for Alpha

– data collection overhead proportional to sampling frequency
– accurately attributes time spent to calling context

 avoids key assumption of gprof: all calls take uniform time
—ongoing work: retarget to Opteron and x86
—LACSI 2004 poster; forthcoming MS thesis

8

Large Systems and Statistical Sampling
• Want post-mortem analysis and spatio-temporal correlations
• But, for systems with thousands of nodes …

—complete monitoring: expensive and inaccurate due to delays
—the law of large numbers starts to apply

– utilization, bandwidth, latency, and availability estimates

• Population sampling approach
—select a statistically valid subset of the population/system
—estimate properties of entire system based on analysis of subset
—stratified sampling: identify equivalence classes and sample each

• Key sampling factors
—sample size, represents the cost of the analysis
—sampling accuracy (precision), where estimates may fail
—sampling confidence, how often that precision is achieved

9

Compilers for High-Level Parallel Programming
• Near term

—compiler technology for SPMD global address space languages
– multiplatform Co-array Fortran compiler: (Alpha, Itanium,

MIPS, Pentium) x (Quadrics, Myrinet, shared memory)
– prototype compiler delivers performance comparable with MPI

—papers
– LCPC 2004 - CAF implementation strategies for shared memory
– PACT 2004 - multi-platform CAF compiler
– LACSI 2004 - evaluate CAF implementation of Sweep3D
– PPOPP 2005 - compare CAF, UPC and MPI performance

• Longer term
—compiler technology for high-level data parallel languages, e.g. HPF

– enabling technology for high-productivity parallel programming
—papers

– PPOPP 2005 - compiler technology for optimizing communication
– IPDPS 2005 - HPF study of IMPACT-3D on µproc cluster

10

Efficiency SP class 'C'

0

0.2

0.4

0.6

0.8

1

1.2

1 4 9 16 25 36 49 64 81 100

procs.

P
a
r
a
ll

e
l

E
ff

ic
ie

n
c
y

MPI

dHPF

HPF vs MPI Efficiency for NAS SP (1623 size)

3027 lines
+69 HPF directives

Alpha+Quadrics @ PSC

11

IMPACT-3D
HPF application: Simulate 3D Rayleigh-Taylor instabilities in

plasma using TVD

• Problem size: 1024 x 1024 x 2048

• Compiled with HPF/ES compiler
—7.3 TFLOPS on 2048 ES processors ~ 45% peak

• Compiled with dHPF on PSC’s Lemieux (Alpha+Quadrics)

17.2352.07.581024

17.4175.53.78512

17.689.91.94256

18.146.41.0128

% peakGFLOPSrelative
speedup

procs

1334 lines
+45 HPF directives

12

Open Source Compilers
Critical resources in scientific computing

• Big picture issues
—GCC is a 1980s design and is showing its age
—what will replace GCC?
—will that compiler produce good code for scientific applications?

• Open64/ORC is a strong candidate
—Well done suite of optimizations, including backend components
—Full-blown dependence analyzer
—Somewhat lacking in support for retargeting

• LLVM is another candidate
—Newer compiler with fewer implemented optimizations
—Good architecture; strong support for retargeting
—Support for runtime reoptimization

Led SC04 Workshop
on Open Source Open64

13

Improving Backend Optimization in LLVM
• Register Allocation

— implemented two coloring allocators for LLVM, tested them across
the range of supported architectures

—both improve code performance with respect to the old allocator
—we will distribute one or both of these allocators (legal issues)
—both allocators move across architectures with almost no changes

• Instruction Selection
—we intend to build an aggressive scheduler for LLVM
—coupled with a new register allocator, should make LLVM competitive

14

Compiler Optimization Research
• High Level

—automatic tuning
– LACSI 2004 - automatic empirical tuning for memory hierarchy

— loop restructuring
– scalarization
– vectorization
– fusion and array contraction

• Low Level
—LACSI 2004: adaptive compilation
—removing redundant memory operations

– discover and remove redundant pointer-based memory
operations (up to 40% of all loads; 16% on average)

—fast techniques for copy coalescing
– new technique for modeling interferences

 speeds up copy coalescing and live-range identification

