Component Integration and Optimization

LACSI Priorities and Strategies Workshop 2005

Ken Kennedy
Rice University

http://lacsi.rice.edu/meetings/internal/slides_feb05/components.pdf
Plan for FY 05

• Refocus on Marmot as Component Challenge Problem
 — Interactions at Monterrey Workshop and a follow-up meeting at LANL (June 2004)
 — Abstract Mesh data structure to increase flexibility
 — Develop plan for activity by Q4 FY04

• Supporting Technologies for Component Integration
 — Transformation systems to eliminate overheads due to abstraction
 — Component integration systems to automate specialization
 - Key problem: integration of data structure components with functional components

• Retargetable High Performance Components
 — Pretuning arbitrary apps to new architectures
Component Integration

• Supporting Technologies for Component Integration
 — Transformation systems to eliminate overheads due to abstraction
 — Component integration systems to automate specialization
 - Key problem: integration of data structure components with functional components

• Continue Collaborations with Marmot Project
 — Pursue directions in the draft collaboration plan (next slide)
 — Application of object-oriented optimization strategies (from JaMake)

• New LANL Contact from Traditional Code Projects

• Challenge Application
 — Export-restricted version of hydro+radiation transport
 — Representative of “traditional” code projects
New Directions

• Specialization Strategies
 – Specialized handling of multiple materials in cells
 – Compiler-based specialization to sparse data structures
 – Combined telescoping languages and dynamic code selection
 – Optimization by limited computation reorganization

• Tools for Preoptimization of Libraries
 – Pre-specialization of library codes to expected calling contexts
 – Potential source of components: Trillinos

• Mining of Traditional Applications
 – Construction of libraries for inclusion in domain languages

• Rapid Prototyping Support
 – Compilation of scripting languages (Python, Matlab) to Fortran/C
Automatic Component Tuning

- Participants: Four Groups within LACSI
 - Tennessee: Jack Dongarra
 - Collaboration with LLNL ROSE Group (Dan Quinlan, Qing Yi)
 - Rice: Ken Kennedy and John Mellor Crummey
 - Students Apan Qasem and Yuan Zhao
 - Rice: Keith Cooper, Devika Subramanian, and Linda Torczon
 - Students Todd Waterman and Alex Grosul
 - Univ of Houston: Lennart Johnsson
 - Students Ayaz Ali, Purvi Shah, Haiyan Teng
Automatic Tuning Plan

• Retargetable High Performance Components
 — Pretuning components to new architectures
 - Arbitrary components: Heuristic search strategies
 - Structural approach: refactor the component into codelets
 — Fault Tolerant Algorithms

• Connection to LANL
 — Point of contact within LANL from “traditional” code projects
 — Release of kernels from code projects (export restricted?)

• Autotuning Challenge
 — Four teams within LACSI will apply techniques to the LANL kernels

• Longer Term
 — Application to component integration challenge application
Planned Workshops

• **Automatic Tuning**
 - **LACSI Groups**
 - Rice, UH, Tennessee
 - Cornell-UIUC (Pingali and Padua)
 - USC ISI (Mary Hall)

• **Parallel Scripting Languages**
 - **Through DARPA HPCS**
 - **Matlab Groups**
 - MIT (Kepner)
 - Tennessee (Dongarra)
 - Rice (Kennedy, Mellor-Crummey, Fowler)
 - OSC-Indiana-PNL (Ahalt, Sadayappan, Chauhan)