Component Integration and Optimization

LACSI Priorities and Strategies Workshop 2005

Ken Kennedy Rice University

http://lacsi.rice.edu/meetings/internal/slides_feb05/components.pdf

Plan for FY 05

- Refocus on Marmot as Component Challenge Problem
 - —Interactions at Monterrey Workshop and a follow-up meeting at LANL (June 2004)
 - -Abstract Mesh data structure to increase flexibility
 - -Develop plan for activity by Q4 FY04
- Supporting Technologies for Component Integration
 - -Transformation systems to eliminate overheads due to abstraction
 - -Component integration systems to automate specialization
 - Key problem: integration of data structure components with functional components
- Retargetable High Performance Components

-Pretuning arbitrary apps to new architectures

Component Integration

- Supporting Technologies for Component Integration
 - -Transformation systems to eliminate overheads due to abstraction
 - -Component integration systems to automate specialization
 - Key problem: integration of data structure components with functional components
- Continue Collaborations with Marmot Project
 - -Pursue directions in the draft collaboration plan (next slide)
 - Application of object-oriented optimization strategies (from JaMake)
- New LANL Contact from Traditional Code Projects
- Challenge Application
 - -Export-restricted version of hydro+radiation transport
 - -Representative of "traditional" code projects

New Directions

- Specialization Strategies
 - —Specialized handling of multiple materials in cells
 - -Compiler-based specialization to sparse data structures
 - -Combined telescoping languages and dynamic code selection
 - Optimization by limited computation reorganization
- Tools for Preoptimization of Libraries
 - -Pre-specialization of library codes to expected calling contexts
 - -Potential source of components: Trillinos
- Mining of Traditional Applications
 - -Construction of libraries for inclusion in domain languages
- Rapid Prototyping Support

- Compilation of scripting languages (Python, Matlab) to Fortran/C

Automatic Component Tuning

- Participants: Four Groups within LACSI
 - Tennessee: Jack Dongarra
 - Collaboration with LLNL ROSE Group (Dan Quinlan, Qing Yi)
 - -Rice: Ken Kennedy and John Mellor Crummey
 - Students Apan Qasem and Yuan Zhao
 - -Rice: Keith Cooper, Devika Subramanian, and Linda Torczon
 - Students Todd Waterman and Alex Grosul
 - -Univ of Houston: Lennart Johnsson
 - Students Ayaz Ali, Purvi Shah, Haiyan Teng

Automatic Tuning Plan

- Retargetable High Performance Components
 - -Pretuning components to new architectures
 - Arbitrary components: Heuristic search strategies
 - Structural approach: refactor the component into codelets
 - -Fault Tolerant Algorithms
- Connection to LANL
 - -Point of contact within LANL from "traditional" code projects
 - -Release of kernels from code projects (export restricted?)
- Autotuning Challenge
 - -Four teams within LACSI will apply techniques to the LANL kernels
- Longer Term

- Application to component integration challenge application

Planned Workshops

- Automatic Tuning
 - -LACSI Groups
 - Rice, UH, Tennessee
 - -Cornell-UIUC (Pingali and Padua)
 - -USC ISI (Mary Hall)
- Parallel Scripting Languages
 - -Through DARPA HPCS
 - -Matlab Groups
 - MIT (Kepner)
 - Tennessee (Dongarra)
 - Rice (Kennedy, Mellor-Crummey, Fowler)
 - OSC-Indiana-PNL (Ahalt, Sadayappan, Chauhan)

