Component Integration and
Optimization

LACSI Priorities and Strategies
Workshop 2005

Ken Kennedy

Rice University

http://lacsi.rice.edu/meetings/internal/slides_feb05/components.pdf

LACSIa»



Participants

* LANL

— Staff: Craig Rasmussen

— Student: Christopher D. Rickett
* Rice

— Faculty/Staff: Ken Kennedy, Bradley Broom*, Zoran Budimlic, Keith Cooper,
Arun Chauhan™, Rob Fowler, Guohua Jin, Tim Harvey, Chuck Koelbel, John
Mellor-Crummey, Steve Reeves, Linda Torczon

— Students: Raj Bandyopadhyay, Alex Grosul, Mack Joyner, Cheryl McCosh,
Apan Qasem, Todd Waterman, Rui Zhang, Yuan Zhao
* Tennessee
— Faculty/Staff: Jack Dongarra, Keith Seymour
— Students: Haihang You, Jelena Pjesivac-Grbovic,and Jeffery Chen

* Houston
— Faculty: Lennart Johnsson
— Students: Ayaz Ali, Purvi Shah, Haiyan Teng

LACSIa»



Outline

Component Integration Systems

—Support for the maintenance and optimization of component libraries
— High-productivity languages

Retargetable High Performance Components

— Automatic tuning of components for specific computing platforms
— Design of adaptive components

Application Drivers from LANL Weapons Program
—Marmot, Telluride, Project A

Previous Project, Phased Down
—High-Level Java Optimization
- Applicable to C++

LACSIa»



Component Integration System

* Component integration systems are important productivity tools

* Programs constructed from them can be slow
—No context-based code improvements can be applied

* Claim: Telescoping languages can address this problem

—Can be applied to construct component integration systems that
yield high-performance applications

—Can make components usable in contexts that have been previously
considered impractical

* ASC Relevance

— Component-based software is critical for productivity and reliability
—Performance must be high for software to be usable
—Useful to prototype in high-productivity language (Python, Matlab)

LACSIa»




Component Integration Challenge

* Integration of different component libraries that
—Implement data structures (e.g., sparse matrices)
— Implement functions on data structures (e.g., linear algebra)

* Problem: Performance

—High function overhead for data structure access (frequently
invoked)

—Need optimization for special contexts

- e.g., invocation in loops

* Telescoping languages well-suited to this challenge
— Advance generation of specialized entries
— Transformation pass to perform substitution

LACSIa»



Telescoping Languages

Component Could run for hours

Library

Optimizer
Generator

Abblication Application Application :{;ders'ranlc:s
PP Translator Optimizer ' r'ar.'y ,Cfl y
as primitives

T ,

Scripting language or Vendor Op'fimized
standard language, Combiler Apblicati
ication
(Fortran or C++) P pplica

LACSIa»



What We Have Done

* Developed base-language compiler technology

—Type inference: Key to generation of C or Fortran from Matlab, S,
or Python

- Useful even if C++ or Fortran is your scripting language

* Conducted preliminary studies
— Matlab SP (Signal Processing), LibGen (library generation)
- Six papers, one Ph.D., two Master’s
—R compilation (funded separately by DOD)

* Demonstrated benefits of telescoping languages as component
integration system (via LibGen)

* Developed strategy for generalized data structures

—Including addition of parallelism to scripting languages (funded by
ST-HEC program from NSF/DARPA)

* Met with Marmot Project to explore collaboration opportunities

LACSIa»




LACSI Interactions

* Priorities and Strategies Meetings

—Inputs from Steven Lee and Ken Koch were pivotal in direction
change

* Attended Common Component Architecture (CCA) Workshop
—LACSI Symposium 2002

* Initial Components Workshop (April 16-17, 2003)
—Organized by Craig Rasmussen

* Discussions with Marmot Project
— Monterrey Methods Workshop (March 16-18, 2004)
— Components Workshop at LANL (June 24, 2004)

- Developed an outline plan for collaboration

LACSIa»



What We Plan to Do

* Seek (and solve) component integration challenge problem

—Based on work from ASC applications
—Emphasis on efficiency of frequent component-crossing
- Integration of data structure and function

* Continue interactions with Marmot Project
—Goal: build tools to help them on their second or third iteration
- Build on work on component integration and optimization of
object-oriented languages
* Explore opportunities in other ASC codes

* Relevance to ASC

— Success will make it easier to use modern component-based
software development strategies in ASC codes

- Without sacrificing performance

LACSIa»



Automatic Component Tuning

* Participants: Four Groups within LACSI
— Tennessee: Jack Dongarra
- Collaboration with LLNL ROSE Group (Dan Quinlan, Qing Yi)
—Rice: Ken Kennedy and John Mellor Crummey
- Students Apan Qasem and Yuan Zhao
—Rice: Keith Cooper, Devika Subramanian, and Linda Torczon
- Students Todd Waterman and Alex Grosul
—Univ of Houston: Lennart Johnsson
- Students Ayaz Ali, Purvi Shah, Haiyan Teng

LACSIa»



Automatic Component Tuning

* Goal: Pretune components for high performance on different
computing platforms (in advance)

—Models: ATLAS, UHFFT
—Generate tuned versions automatically

* Strategy: View as giant optimization problem with code running
time as objective function

—For each critical loop nest:
- Parameterize the search space
- Prune using static analysis

- Employ heuristic search to find optimal point and generate
optimal code version

— Typical optimizations:

- Loop blocking, unroll, unroll-and-jam, loop fusion, storage
reduction, optimization of target compiler settings, inlining,

optimization of function decomposition
LACSIES




Automatic Tuning

* Successes
—Experimental infrastructure
- LoopTool, MSCP, ATLAS2, CODELAB
—Large-scale experiments
—Principles demonstrated
- Effectiveness of heuristic search
—Papers published
- Seven refereed publications and one technical report (see web
site)
* Relevance
—Dramatically increases productivity of scientific programming

* Connections to ASC
—Sweep3D, Marmot, Truchas, Project A

LACSIa»



A Previous Effort

* JaMake Java Framework
— Collaboration with CartaBlanca Project
—Performs object inlining on arrays of objects
- Overcomes the cost of using full OO polymorphism
- Achieved 80% improvement on the LANL Parsek code
—Results apply to C++ and Python
— Attracted NSF funding, published 6 refereed papers
— Applicable to other object-oriented languages (e.g., C++)

LACSIa»



Plan for FY 05

* Refocus on Marmot as Component Challenge Problem

—Interactions at Monterrey Workshop and a follow-up meeting at
LANL (June 2004)

— Abstract Mesh data structure to increase flexibility
—Develop plan for activity by Q4 FYO4

* Supporting Technologies for Component Integration
— Transformation systems to eliminate overheads due to abstraction
— Component integration systems to automate specialization
- Key problem: integration of data structure components with
functional components
* Retargetable High Performance Components

—Pretuning arbitrary apps to new architectures

LACSIa»



