
Compiling for Increasing On-chip Parallelism

Yuan Zhao Ken Kennedy
Computer Science Department, Rice University

6100 Main St, Houston, Texas 77005
Email: [yzhao|ken]@cs.rice.edu

Abstract

It becomes a trend that microprocessor com-
panies are adding more and more parallelism on a
chip to increase performance per chip. At the fine
granularity level, vector instruction sets are added.
While at the coarse granularity level, multiple cores
are put on the same chip. This trend presents a
challenge for application developers as well for
compiler developers: how to exploit the power of
these introduced parallelism? In this paper, we
present a source-to-source compiler that automati-
cally compiles programs written by ordinary users
targeting the on-chip parallelism without users
specifying parallelism directives. Initially developed
for short vector processors, this compiler is ex-
tended to support a heterogeneous multi-core CELL
processor. Besides parallelism, these processors
also introduced various memory constraints such as
data alignment and data movement that will affect
an application’s performance. Thus we will discuss
our compiler strategies for these issues as well.

Keyword: On-chip Parallelism, Vectorization,
Parallelization, Heterogeneous Multi-core, Mem-
ory Hierarchy Performance, Data Alignment, Data
Movement, Vector Data Reuse

1 Introduction

It becomes a trend that microprocessor compa-
nies are adding more and more parallelism onto a
single chip as a different way to improve the per-
formance per chip than scaling up the operating fre-
quencies, which has encountered problems such as
heat dissipation. For fine-grained parallelism, vector
function units are added to support vector instruc-
tion sets such as SSE on x86 and x86-64 processors
from Intel and AMD, and AltiVec on PowerPC pro-
cessors from IBM and Motorola. For coarse-grained

parallelism, additional cores are put onto the same
chip. These cores are either identical on a homo-
geneous multi-core processor such as the Intel and
AMD ones, or different on a heterogeneous multi-
core processor such as the CELL processor devel-
oped by Sony, Toshiba and IBM.

Increasing parallelism on chip presents a chal-
lenge for both the application and the compiler de-
velopers: how to fully exploit the power of these
parallelism? To make matters worse, there are ad-
ditional memory constraints such as data alignment
and data movement associated with these parallelism
and the performance of an application also depends
on how well these memory constraints are addressed.
While application developers can manually paral-
lelize and vectorize their code with expert knowl-
edge, we think a general approach for ordinary users
is to have a compiler that automatically compiles se-
quential code onto the targeted architecture.

In this paper, we present such an automatic ap-
proach that we developed initially for short vector
processors with SSE or AltiVec, and later extended
for a CELL processor. The focus of our source-to-
source compiler is the loop nests that often represent
computation kernels in scientific applications. Given
a sequential program written in Fortran 90, based
on dependence analysis information, the loop nests
are parallelized and vectorized when applicable. The
output program is in a mix of Fortran and C code: the
sequential part of the program remain unchanged in
Fortran, while the transformed loop nests are proce-
dure outlined and rewritten in C to take advantage of
the intrinsics for parallelism, as shown in Figure 1.
The output is then passed to and compiled by a ven-
dor compiler to generate the executable.

In what follows, Section 2 presents our compiler
for short vector processors, Section 3 discusses the
extension of the compiler for a CELL processor, Sec-
tion 4 reviews related work, and Section 5 concludes.



Figure 1: Compilation model

2 Compiling for Short Vector Processors

We focus on the SSE and AltiVec vector instruc-
tion sets that are widely available on mainstream mi-
croprocessors. Initially designed for multimedia ap-
plications, they can be used to speedup scientific ap-
plications as well when fully utilized.

2.1 Architecture Characteristics

Short vector length Compared to conventional
vector machines, the vector length of SSE and Al-
tiVec vectors is relatively short—16 bytes.

Continuous memory access Vector operations
can only fetch or store continuous data in memory,
i.e. strided vector accesses are not supported.

Data alignment Vector data accesses to data
aligned on 16-byte boundaries are much more effi-
cient than those to unaligned ones.

Vector intrinsics Programmers can directly ac-
cess vector data types and vector operations through
vector intrinsics in C.

2.2 Compilation Strategy

We follow the compilation model shown in Fig-
ure 1 and vectorize loop nests using the intrinsics.
For an innermost loop to be Short Vectorizable with
SSE or AltiVec, the following conditions need to be
met:

• It does not carry true or output dependences
or dependence cycles, except that an anti-
dependence on a statement itself is allowed;

• Each array reference is either loop invariant or
memory continuous to the loop.

Our compiler implementation is based on the D
system developed at Rice University for compiling
Fortran programs. As shown in Figure 1, the vector-
ized loop is rewritten in C using the SSE or AltiVec
intrinsics. Since we are targeting both SSE and Al-
tiVec, the vector operations are abstracted in the in-

termediate representation and are converted into real
intrinsics during the final stage of code generation.

2.3 Optimizations for Performance

Besides vectorization, the performance of an ap-
plication using SSE or AltiVec is affected by the
memory alignment constraint. To make as many ar-
ray references aligned as possible, the array refer-
ences in the loop is first partitioned into equivalent
classes based on their alignment boundaries, then the
following optimizations can be applied accordingly:

Loop peeling makes array references in one
equivalent class aligned upon entry to the first iter-
ation of the remaining loop after peeling;

Loop alignment shifts the relative alignment
distance between an array reference on the left hand
side and one on the right hand side, and could put
two references into the same equivalent class;

Software pipelined vector accesses treat each
array reference in the loop as a data stream rather
than an independent access in each iteration, and
pipeline the stream so that only one vector access and
one vector shuffling are required in each iteration;

Array padding pads the innermost dimension
of a multi-dimensional array so that two array ref-
erences with the same innermost-dimension index
are aligned on the same boundary (e.g. A(I, J) and
A(I, J + 1)).

Another optimization to reduce vector data ac-
cesses is data reuse in vector registers. We imple-
mented a version of vectorized scalar replacement,
which is a straight-forward extension from the scalar
replacement for data reuse in scalar registers.

Experimental results are omitted for short vector
processors due to the space limit of this paper.

3 Compiling for a CELL Processor

Figure 2 shows a basic diagram of a heteroge-
neous multi-core CELL processor:

3.1 Architecture Characteristics

Parallelism It has 1 PPE core (PowerPC) and 8
SPE cores that are capable of short vector operations.
PPE is responsible for fork-and-joining SPE threads.

Data movement Each SPE has its own 256KB
local store memory (LS). The program running on



Figure 2: A CELL processor

SPE can only access data in LS, all data transfers in
between LS and main memory have to be explicitly
controlled by DMA commands. Each DMA oper-
ation can transfer 1, 2, 4, 8, 16 ∗ k bytes up to 16K
bytes of data on naturally aligned boundaries.

Intrinsics The mechanisms for fork-and-joining
SPE threads, DMA transfers, and synchronization
are accessible from intrinsics in C.

Though SPE cores have a different vector in-
struction set from the PPE core, they have similar
memory constraints such as data alignment and con-
tinuous memory accesses. On CELL, data alignment
also affects the performance of DMA transfers.

3.2 Compilation Strategy

For a loop nest that can be compiled using the
parallelism (CELLizable) on a CELL processor, we
need to find a loop in the nest that is parallelizable
and make sure the innermost loop is short vectoriz-
able. Whether a loop is short vectorizable is given in
Section 2. To find a parallel loop, a similar algorithm
to Allen and Kennedy’s vectorization algorithm [3]
is developed. The algorithm traverses from the out-
ermost loop towards the innermost loop, searching
for a loop that carries no dependence. Such a loop is
marked parallel and its iterations will be partitioned
later. If no such loop is found, the outermost loop is
marked sequential and removed from the loop nest
along with all dependences it carries, and the search
process is repeated until a parallel loop is found.
Note that the innermost loop can be the candidate
for both parallelization and vectorization.

Once a CELLizable loop nest is identified, it will
be procedure outlined and its computation will be
partitioned among PPE and SPEs, as shown in Fig-
ure 3. The loops marked sequential will require a
barrier synchronization among PPE and SPEs.

We implemented this compilation model as an
extension to the short vector compiler presented in

Figure 3: Compilation model on CELL

Section 2:

• parallel loop detection and code generation;
• multi-buffering DMA data transfer;
• vectorization support for the SPE instruction set

(this is fairly easy due to the vector abstraction
in the intermediate representation);

• code generation for synchronization among
PPE and SPEs.

3.3 Optimizations for Performance

The performance of an application on CELL de-
pends not only on finding efficient amount of paral-
lelism, but also on how well the memory constraints
are addressed. We implemented the following opti-
mizations for performance improvement:

Multi-buffering Since data has to be explicitly
transferred in between the main memory and SPEs’
LS, multi-buffering can overlap data transfers with
computation to hide the latency of data transfers.

Data alignment For the performance of vec-
tor computations on both PPE and SPE, optimiza-
tion discussed in Section 2 such as loop peeling,
loop alignment, software-pipelined vector accesses
and array padding still apply here. Data alignment
also affects the performance of DMA data transfers
since naturally aligned boundaries are required. We
perform loop peeling on the PPE side so that the data
transfer on SPEs are aligned properly.

Synchronization We mentioned that a loop
marked sequential in the loop nest needs a bar-
rier synchronization among PPE and SPEs to pre-
serve the semantics of the original program. We
also implemented an uni-directional synchronization
to parallelize the innermost loop that carries anti-
dependence. Coupled with post-store transforma-
tion, this approach can improve the performance sig-
nificantly compared to the parallelization strategy
that allocates a temporary array.



Data reuse Again, vectorized scalar replace-
ment can help increase the data reuse in vector reg-
isters, especially that each SPE has 128 registers. It
can also help reduce the DMA data transfers by only
transferring the leaders of the reference groups.

3.4 Experimental Results

Figure 4 shows the speedup of using multiple
SPEs to using PPE only for two computation ker-
nels, 1-dimensional and 2-dimensional stencils, on
a 3.2GHz CELL blade. Our compiler applied loop
peeling, software pipelined vector accesses and vec-
torized scalar replacement on these two codes, in ad-
dition to parallelization and vectorization. Each code
is run with a small and a big problem size. We can
see that SPE is much faster than PPE, and the best
speedup doesn’t come when more SPEs are used if
the problem size is small. We believe the reason is
that the amount of computation per transferred data
in the tested kernels is small and the performance is
determined by the data transfer. We are currently in-
vestigating methods to improve the computation to
data transfer ratio.

1 2 3 4 5 6 7 8
2

4

6

8

10

12

14

Number of SPEs

S
pe

ed
up

 to
 u

si
ng

 P
P

E
 o

nl
y

 

 

1d stencil small
1d stencil big
2d stencil small
2d stencil big

Figure 4: Speedup of using multiple SPEs

4 Related Work

Our compiler strategy is related to various loop
nest parallelization and vectorization work done for
various architectures [1, 2, 3, 4, 5, 8, 7, 6, 11, 9, 10].
The ones on short vector processors also address
data alignment problem. For the CELL processor,
OpenMP is the only parallel programming model im-
plemented so far, by an IBM research compiler [6].

5 Conclusion

In this paper, we presented an automatic com-
pilation strategy that compiles user programs with-
out parallelism directives targeting the increasing on-

chip parallelism in modern microprocessors, based
on the dependence analysis information. Compared
to the OpenMP approach, our approach needs no
parallelism directives, and thus provides users ad-
ditional choice when programming for CELL. Our
implementation demonstrated that compilers devel-
oped for short vector processors can be extended to
support multi-core processors.

Acknowledgments
This work is supported by Contract No. 12783-

001-0549 from the Regents of University of Cali-
fornia (Los Alamos National Laboratory) to William
Marsh Rice University, and the CELL development
systems (including CELL blades) are provided by
IBM to University of Tennessee and Rice University.

References

[1] J. R. Allen. Dependence Analysis for Subscripted Vari-
ables and its Application to Program Transformation. PhD
thesis, Rice University, Houston, Texas, 1983.

[2] Randy Allen and Ken Kennedy. Vector register allocation.
IEEE Transactions on Computers, 41(10):pp. 1290–1317,
1992.

[3] Randy Allen and Ken Kennedy. Optimizing Compilers for
Modern Architectures. Morgan Kauffman, October 2001.

[4] Aart J. C. Bik, Milind Girkar, Paul M. Grey, and Xinmin
Tian. Automatic intra-register vectorization for the intel
architecture. International Journal of Parallel Program-
ming, 30(2):pp. 65–98, 2002.

[5] Crescent Bay Software. VAST/AltiVec.
http://www.crescentbaysoftware.com/vast_altivec.html.

[6] Alexandre E. Eichenberger, Kathryn O’Brien, Kevin
O’Brien, Peng Wu, Tong Chen, Peter H. Oden, Daniel A.
Prener, Janice C. Shepherd, Byoungro So, Zehra Sura,
Amy Wang, Tao Zhang, Peng Zhao, and Michael
Gschwind. Optimizing compiler for a cell processor. In
PACT, 2005.

[7] Alexandre E. Eichenberger, Peng Wu, and Kevin O’Brien.
Vectorization for SIMD architectures with alignment con-
straints. In PLDI’04, June 2004.

[8] S. Larsen and S. Amarasinghe. Exploiting superword level
parallelism with multimedia instruction sets. In PLDI,
2000.

[9] Dorit Nuzman and Richard Henderson. Multi-platform
auto-vectorization. In CGO, Washington, DC, USA, 2006.

[10] Dorit Nuzman, Ira Rosen, and Ayal Zaks. Auto-
vectorization of interleaved data for SIMD. In PLDI, 2006.

[11] Yuan Zhao and Ken Kennedy. Scalarization on short vec-
tor machines. In 2005 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS),
March 20–22, 2005.


