
2004 LACSI Priorities & Strategies

LAUR # 04-7982 1

Priorities and Strategies

Los Alamos Computer Science Institute

On March 18-19, 2002 the Los Alamos Computer Science Institute (LACSI) Executive
Committee and Principal Investigators met to discuss methods of addressing issues raised
in the 2001 LACSI Contract Review. The body was tasked to develop priorities and
strategies to meet future programmatic and LANL computer science needs.

A framework was developed to address long-term strategic thrust areas. Specific
objectives were called out as near-term priorities. The objectives were folded into the
framework to form a coherent planning view. On both April 8-9, 2003 and February 19-
20, 2004, the LACSI Executive Committee and Principal Investigators met with senior
LANL personnel to revise the framework, priorities, and strategies established at the
planning meeting in 2002.

The current framework outlines five strategic thrust areas:

• Components
• Systems
• Computational Science
• Application and System Performance
• Computer Science Community Interaction

This document presents the research vision and implementation strategy in each of these
areas.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 2

Components
Ken Kennedy (ken@rice.edu)
Jack Dongarra (dongarra@cs.utk.edu)
Lennart Johnsson (johnsson@cs.uh.edu)
Doug Kothe (dbk@lanl.gov)
Craig Rasmussen (crasmussen@lanl.gov)

The goal of the component architectures effort is to make application development easier
through the use of modular codes that integrate powerful components at a high level of
abstraction.

Through modularization and the existence of well-defined component boundaries
(specified by programming interfaces), components allow scientists and software
developers to focus on their own areas of expertise. For example, components and
modern scripting languages enable physicists to program at a high level of abstraction (by
composing off-the-shelf components into an application), leaving the development of
components to expert programmers. In addition, because components foster a higher
level of code reuse, components provide an increased economy of scale, making it
possible for resources to be shifted to areas such as performance, testing, and platform
dependencies, thus improving software quality, portability, and application performance.

A fundamental problem with this vision is that Los Alamos application developers, and
most others in science, cannot afford to sacrifice significant amounts of performance for
this clearly useful functionality. Therefore, an important part of the effort is to explore
integration strategies that perform context-dependent optimizations automatically as a
part of the integration process. This theme defines a significant portion of the research
content of the work described in the remainder of this section.

Short-Term Goals

LACSI Component Integration Challenge

Subproject Leads: Craig Rasmussen, LANL, crasmussen@lanl.gov; Ken Kennedy,
Rice, 713-348-5186, ken@cs.rice.edu

One of the most difficult challenges for component integration is the problem of
integrating data structure components (e.g., sparse matrices) with functional components
(e.g., linear algebra). This problem is hard because the frequency of invocation of data
access methods places a premium on high performance of the component interfaces. The
long-term research section of the proposal has taken this as a major focus for the next
several years.

To drive this research in directions that are most useful to LANL, we will collaborate
with developers on the Marmot code teams to understand how component integration
strategies can make their efforts more effective overall. In particular, we will work to
define a challenge problem by specifying the interfaces and functionality of components

2004 LACSI Priorities & Strategies

LAUR # 04-7982 3

within Marmot that implement abstract meshes on which computations are carried out.
These specifications will be developed through a joint study between code developers
and computer and computational scientists within LACSI. A goal of this effort is to
leverage the telescoping languages strategy for efficient component integration that is the
subject of LACSI research. The ultimate goal is to make it possible for the designer to
specify data structures and functionality at a high level of abstraction without sacrificing
the efficiency required by production weapons codes.

Tasks:

• Organize and convene a series of meetings to explore research directions for
components in high-end computing with a special emphasis on the Marmot code.
(Quarters 1-3)

• Produce a report defining componentization strategies for support of future
generations of ASC codes. (Quarter 4)

Long-Term R&D
Once the problems and current solution strategies are well understood, the Components
research effort should focus on long-term research and development projects that will not
only address the problem effectively when they mature many years in the future, but also
provide important short- and medium-term payouts for ASC and Los Alamos
applications.

A major goal of this research should be to address the trade-off between generality of
programming systems and the performance that applications written in them can deliver.
Today, many high-level problem solving environments and component integration
systems exist, but the performance penalty for using them is severe. Is this situation an
immutable law of nature, or merely an artifact of the implementation approaches we have
pursued to date? The proposed research efforts on telescoping languages and compilation
of object-oriented languages attempt to address this issue.

A second major question in this area is: Can we build components with the built-in ability
to adapt with high performance to new computational platforms? One approach that has
proved successful is the Atlas system, which uses substantive amounts of computation to
provide versions of a computational linear algebra kernel that are highly tuned in advance
to different machines. If this approach can be extended more generally to components of
all kinds, it would help avoid the enormous costs involved in retargeting applications to
different machines.

In the sections that follow, we will elaborate on some promising research directions
addressing these issues.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 4

Supporting Technologies for Component Integration

Subproject Leads: Ken Kennedy, Rice, ken@cs.rice.edu; Jack Dongarra, Tennessee
dongarra@cs.utk.edu

The goal of this research is to develop compiler technologies and library designs that will
make it possible to automatically construct domain-specific development environments
for high-performance applications from collections of components. This effort will
develop advanced compiler technology to integrate collections of components into a
high-performance application without sacrificing the performance of hand-integrated
codes.

In the strategy we envision, programs would use a high-level scripting language such as
Matlab or Python to coordinate invocation of library operations, although traditional
languages such as Fortran and C++ could also serve this purpose. Scripting languages
typically treat library operations as black boxes and thus fail to achieve acceptable
performance levels for compute-intensive applications. Previously, researchers have
improved performance by translating scripts to a conventional programming language
and using whole-program analysis and optimization. Unfortunately, this approach leads
to long script compilation times and has no provision to exploit the domain knowledge of
library developers.

To address these issues, we are pursuing a new approach called “telescoping languages,”
in which libraries that provide component operations accessible from scripts are
extensively analyzed and optimized in advance. In this scheme, language implementation
consists of two phases. The offline translator generation phase digests annotations
describing the semantics of library routines, combines them with its own analysis to
generate an optimized version of the library, and produces a language translator that
understands library entry points as language primitives. The script compilation phase
invokes the generated compiler to produce an optimized base language program. The
generated compiler must (1) propagate variable property information throughout the
script, (2) use a high-level “peephole” optimizer based on library annotations to replace
sequences of calls with faster sequences, and (3) select specialized implementations for
each library call based on parameter properties at the point of call.

We will use this strategy to attack the problem of making component integration efficient
enough to be practical for high-performance scientific codes. Of particular importance in
this context is the problem of efficiently integrating data structure components (e.g.,
sparse matrices) with functional components (e.g., linear algebra). This work will begin
with a simple prototype of Matlab (or Python) that includes arrays with data distribution.
Specific array distributions for sparse matrices will be explored as a way of
understanding the crucial performance issues. In the long term, this may lead to a new
strategy for introducing parallelism into Matlab and other scripting languages—by
distributing the arrays across multiple processors and performing computations close to
the data. (The parallel Matlab effort is leveraged through funding from the NSF ST-HEC
effort. In this project we hope to apply this work to ASC codes.)

2004 LACSI Priorities & Strategies

LAUR # 04-7982 5

Once the Matlab array prototype has been explored, we will focus on the Marmot mesh
data structures with the goal of demonstrating a prototype with adequate efficiency for
use in production codes based on these components. The ultimate goal is to make it
possible to quickly substitute different mesh data structures in a code without rewriting
the functional components and vice versa.

If this effort is to succeed, it must take into account two important realities. First, many
components will be constructed using object-oriented languages, so techniques for
optimizing such languages are critical. Second, the execution environments for the
resulting programs may be distributed, so the implementation must consider the
performance implications of distributed systems, even if the applications are compiled
together.

With these considerations in mind, we plan to pursue research in five fundamental
directions:

Toolkits for Building Problem-Solving Systems: The effort will focus on the production of
tools for defining and building new domain specific PSEs, including:

• Tools for defining and building scripting languages based on well-known
platforms, such as Matlab and Python.

• Strategies for scalable parallelization of scripting languages such as Matlab and
Python.

• Translation of scripting languages to standard intermediate code, especially
languages like C.

• Frameworks for generating optimizers for scripting languages that treat
invocations of components from known libraries as primitives in the base
language.

• Optimizing translation of intermediate language to distributed and parallel target
configurations.

• Assessment of performance/fault tolerance and relation to user code
• Tools for integrating existing code.
• Demonstration of these techniques in specific applications of interest to ASC and

LANL, with a special emphasis on codes in the Marmot effort.

An important goal of this effort is to make it possible to build highly efficient
applications from script-based integration of pre-defined components. Building on the
component architecture efforts described in this section, we will pursue the novel strategy
of “telescoping languages” to make it possible to extend existing languages through the
use of software components.

Advanced Component Integration Systems: This effort will explore the application of
telescoping languages technology to the component integration problem, with a particular
emphasis on integrating components that support data structures with those that
implement functionality. The effort will also consider technologies for optimizing

2004 LACSI Priorities & Strategies

LAUR # 04-7982 6

accesses to the component interfaces emerging from the Marmot code development
efforts. The long-term goal of this research is to produce a component integration
framework that is efficient enough to be accepted by high-performance application
developers, such as those in the LANL ASC program.

Design for Efficient Component Integration: This effort will focus on the design and
specification of components that can be used in a PSE for high-performance computation.
Significant issues will be flexibility and adaptability of the components to both the
computations in which they are incorporated and the platforms on which they will be
executed. In addition, these components must have architectures that permit the effective
management of numerical accuracy. A specific issue of importance is design strategies
for efficient data structure components.

Component Systems for Heterogeneous Computing Systems: The key challenge in this
area is to construct applications that can be flexibly mapped to heterogeneous computing
components and adapt to changes in the execution environment, detecting and correcting
performance problems automatically. In this activity, we will explore the meaning of
network-aware adaptive component frameworks and what the implementation and
optimization challenges are for applications constructed from them. In addition, we will
pursue research on middleware to support optimal resource selection in heterogeneous
environments. A major byproduct of this work will be performance estimators (described
in the “Modeling of Application and System Performance” section on page 27) and
mappers that can be used to map applications efficiently to heterogeneous computing
systems, such as distributed networks and single-box systems containing different
computing components (e.g., vector processors and scalar processors). The latter is a
characteristic of several planned HPC computing systems.

Compilation of Object-Oriented Languages: Object-oriented languages like C++, Java,
and Python have a number of attractive features for the development of rapid prototyping
tools, including full support for software objects, parallel and networking operations,
relative language simplicity, type-safety, portability, and a robust commercial
marketplace presence leading to a wealth of programmer productivity tools. However,
these languages have significant performance problems when used for production
applications. In this effort, we are studying strategies for the elimination of impediments
to performance in object-oriented systems.

To achieve this goal, we must develop new compilation strategies for object-oriented
languages such as C++, Java, and Python. This should include interprocedural techniques
such as inlining driven by global type analysis and analysis of multithreaded applications.
This work would also include new programming support tools for high-performance
environments. Initially, this work has focused on Java, through the use of the JaMake
high-level Java transformation system developed at Rice in collaboration with the LANL
CartaBlanca project. This system includes two novel whole-program optimizations,
“class specialization” and “object inlining,” which can improve the performance of high-
level, object-oriented, scientific Java programs by up to two orders of magnitude.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 7

In the next phase of research, we will consider how to adapt these strategies to develop
tools and compilation strategies that would directly support the code development
methodologies to be used in the Marmot effort. Examples include not only the
application of object inlining and class specialization, but also the use of type analysis to
support the elimination of dynamic dispatch of methods, a major problem for high
performance codes written in C++. We will also consider ways to apply these
compilation strategies to Python used as a high-level application prototyping system.

Tasks:

• Produce a simple component integration system based on Matlab as a scripting
language, which would include the Matlab-to-C compiler developed under earlier
LACSI support. (Quarter 3)

• Design the component integration strategy for supporting the Marmot application
development and produce a report on the design. (Quarter 2)

• Develop a preliminary implementation for distributed matrices in Matlab and
possibly Python. (Quarter 4)

• Deliver prototype performance modeler for heterogeneous components. (Quarter
1)

• Design and develop preliminary tools to support object-oriented programming in
high performance applications, delivering a report describing them and
experiments on their effectiveness. (Quarter 4)

Retargetable High-Performance Components and Libraries

Subproject Leads: Jack Dongarra, Tennessee dongarra@cs.utk.edu, Lennart
Johnsson, Houston, johnsson@cs.uh.edu, Ken Kennedy, Rice, ken@cs.rice.edu

For many years, retargeting of applications for new architectures has been a major
headache for high performance computation. As new architectures have emerged at
dizzying speed, we have moved from uniprocessors, to vector machines, symmetric
multiprocessors, synchronous parallel arrays, distributed-memory parallel computers, and
scalable clusters. Each new architecture, and even each new model of a given
architecture, has required retargeting and retuning every application, often at the cost of
many person-months or years of effort.

Unfortunately, we have not yet been able to harness the power of high-performance
computing itself to assist in this effort. We propose to change that by embarking on a
project to use advanced compilation strategies along with extensive amounts of
computing to accelerate the process of moving an application to a new high-performance
architecture.

To address the problem of application retargeting, we must exploit some emerging ideas
and develop several new technologies.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 8

Automatically Tuned Library Kernels: First, we will exploit the recent work on
automatically tuning computations for new machines of a given class. Examples of
effective use of this approach include FFTW, Atlas, and UHFFT. The basic idea is to
organize the computation so that it is structured to take advantage of a variety of
parameterized degrees of freedom, including degree of parallelism and cache block size.
Then, an automatically generated set of experiments picks the best parameters for a given
new machine. This approach has been extremely successful in producing new versions of
the LAPACK BLAS needed to port that linear algebra package to new systems. We will
extend this work to systems that can automatically generate the tuning search space for
new libraries using automatic application tuning methodologies described in the
“Application and System Performance” section, which starts on page 26.

Self-Adapting Numerical Software: We will explore new approaches to building adaptive
numerical software that overcome many of the deficiencies of current libraries. An
adaptive software architecture has roughly three layers. First, there is a layer of
algorithmic decision making; the top level of an adaptive system concerns itself with the
user data, and based on inspection of it, picks the most suitable algorithm, or
parameterization of such algorithms. The component responsible for this decision process
is an “Intelligent Agent” that probes the user data and, based on heuristics, chooses
among available algorithms. Second, there is the system layer; software on this level
queries the state of the parallel resources and decides on a parallel layout based on the
information returned. There can be some amount of dialog between this level and the
algorithmic level, since the amount of available parallelism can influence algorithm
details. Finally, there is the optimized libraries level; here we have kernels that provide
optimal realization of computational and communication operations. Details pertaining to
the nature of the user data are unlikely to make it to this level. Implicit in this approach is
a distinction among several kinds of adaptivity. First of all, there is static adaptivity,
where adaptation happens during a one-time installation phase. Contrasting with this type
of adaptivity is dynamic adaptivity, where at run-time the nature of the problem and
environment are taken into account. Orthogonal to this dichotomy is the distinction of
adapting to the user data or the computational platform (e.g., memory hierarchy,
communication latency/bandwidth or failure modes). We stress the obvious point that, in
order to adapt to user data, a software system needs software that engages in discovery of
properties of the input. Oftentimes, such discovery can only be done approximately and
based on heuristics, rather than on an exact determination of numerical properties.

Using the above framework we will investigate the use of Matlab as a front-end for
computing on a cluster.

We propose to conduct research on the topics described in this section and to use the
results of this effort to construct at least one retargetable application of interest to DOE
and the ASC program.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 9

Tasks:
• Feature Detector. This component collects timing data and examines it for special

features. It may interpolate to fill in gaps or request additional timings to enhance
complicated parts of timing curves. (Quarter 1)

• Investigate search space optimization and automatic search space generation;
expand to heterogeneous clusters. (Quarter 2)

• Develop and implement UHFFT-style code generation and optimization for a
limited set of multi-grid methods to be chosen in collaboration with LANL staff
for maximum benefit to the ASC program within given resource constraints.
(Quarter 2)

• Implement ATLAS-style tuning to sparse linear algebra and cluster numerical
libraries. (Quarter 3)

• Incorporate optimizations into targeted applications; cultivate second round of
applications for optimization. (Quarter 4)

2004 LACSI Priorities & Strategies

LAUR # 04-7982 10

Systems
Rod Oldehoeft (rro@lanl.gov)
Rob Fowler (rjf@rice.edu)
Jack Dongarra (dongarra@cs.utk.edu)
Wu-Chun Feng (feng@lanl.gov)
Rich Graham (rlgraham@lanl.gov)
Barney Maccabe (maccabe@cs.unm.edu)
John Mellor-Crummey (johnmc@rice.edu)
Dan Reed (Dan_Reed@unc.edu)
Scott Rixner (rixner@cs.rice.edu)

Overview
The Systems sub-area encompasses research in operating systems and closely allied areas
as applied to high performance computing at LANL, specifically within the ASC
program. We focus on research problems that will be critical to the program in a multi-
year window beginning in FY05. In addition to the needs of ASC, the scope of this
discussion is further constrained by the interests and abilities of the researchers, research
and development programs funded by other sources at the participating institutions, and
the funding level of LACSI for the work.

Research issues in Systems are organized into two main areas. First, “networking/
messaging” refers to problems specifically related to communication research, spanning
low-level network architecture to high-level messaging and parallel I/O. Second,
“clustering” encompasses research in software for effective integration of nodes,
communication, storage and tools into scalable, high-performance systems.

In each area, three criteria serve as goals and evaluation metrics: performance, reliability,
and utility. Since both areas need to competently meet these goals, all three criteria are
used to describe the research in both areas.

 Performance Reliability Utility
Networking/Messaging

Clustering

In addition, each of the resulting six sections that follows is organized into long-term
research, and more specific short-term goals that are constrained by available funding and
other resources.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 11

Networking/Messaging

By the end of FY05, we expect to see dramatic improvements in the raw capabilities of
networking hardware. Initially, the commercial and industrial emphasis will be on the
use of this hardware in network infrastructures (backbones) and in commercial servers.
These improvements will become available (affordable) in commodity products in the
succeeding years. Our challenge is to integrate these technologies into system area
networks in new generations of clusters for scientific computing. Software layers must
evolve to leverage new hardware to realize better network performance with lower
system overheads, to maintain and enhance the reliability of message passing, and to
implement new standards in communication to make systems more useful.

Networking: Performance

Contributors: Bridges, Feng, Maccabe, Minnich, and Rixner.

Long-Term Goals

Addressing the goal of achieving high network performance with low system overhead in
cluster interconnects will require coordinated activities among all of the researchers in
LACSI involved in networking. Topics that need to be addressed include:

Node architectures
Interfacing the NICS to the nodes
Protocol design and structure

Implementation of protocols for performance
Assignment of work to the hardware components

Assignment of work to NICS (co-processors) to offload CPU
Zero-copy, zero-map implementations for latency, bandwidth, and efficiency.

Short-Term Activities

System Area Networks/ Cluster Interconnect

From a networking perspective, polling is the most efficient way to minimize latency and
maximize bandwidth. However, polling interferes with the application, and as such is
undesirable. Furthermore, as the size of the cluster increases the number of memory
locations that need to be polled can generally increase. (This depends on the
NIC/communications protocol being used.) To eliminate most of this overhead, and so
that the data can be available to the application as early as possible, we will investigate an
efficient and robust implementation of an event based progress mechanism, and
specifically, one that is consistent with MPI semantics. We have already done some
initial work on this in the context of a TCP/IP communications layer and shared memory
that can take advantage of current kernel level support. We plan to extend this to O/S
bypass protocols for which such support is not as well developed.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 12

In addition, we will start to look at moving as much of the messaging processing down to
the NIC as makes sense. This presents a couple of challenges:

• Preserving MPI's in-order message delivery while allowing multiple NICs to be
used for traffic between two fixed end-points, and

• Data integrity processing when the hardware path from the NIC to main-memory

does not handle data corruption (i.e. bus errors). NIC processing is highly
desirable as a way to insulate collective communications from slow downs in
collective operations due to random OS activities, which become coupled because
of the collective nature of the operations. This tends to harm scalability, but also
reduces the number of CPU cycles used for communications.

Efficient Zero-copy, Zero-mapped Asynchronous I/O Subsystems

The goal of this research is to investigate the performance tradeoffs of using Ethernet and
TCP in cluster computing. Specialized networks, such as Quadrics and Myrinet, are
typically used in cluster computing because of their higher bandwidth and lower latency.
However, raw Ethernet is extremely competitive both in terms of bandwidth and latency
when cost is considered. The drawbacks of Ethernet typically arise because of the way
that it is used both by the operating system and the MPI library. With specialized
networks, the protocol processing is usually handled directly in the MPI library. By doing
so, the transport protocol can be tailored specifically to the cluster-computing domain,
which reduces latency, and copying can be minimized by using such techniques as
remote DMA.

In TCP, the protocol processing is handled within the operating system, which can be
much more efficient. Currently, however, the use of TCP for MPI degrades performance,
as TCP is designed to work over the Internet, rather than in the relatively controlled
network of a computing cluster. Some of the most significant TCP overheads relate to
copying between the application-level and kernel-level on network sends and receives.
Although these problems have been solved in the past for network sends, generally
applicable and easily programmable zero-copy receives remain an open problem.

Despite these drawbacks, using TCP over Ethernet has several advantages if its
performance can be made competitive. First, Ethernet is clearly less expensive than
specialized networks. Second, TCP provides reliability and easy portability across
systems. Network servers are able to achieve extremely high performance levels with
TCP, using scalable event notification systems, such as /dev/epoll in Linux, zero-copy
I/O, and asynchronous I/O.

We intend to show that operating system advances for network servers and
programmable network interfaces can be used to allow TCP over Ethernet to achieve
competitive performance for cluster computing. Specifically, programmable network
interfaces can be used as a mechanism for receive copy-avoidance. These network
interfaces allow unexpected data to be buffered until they are needed by a receive posted

2004 LACSI Priorities & Strategies

LAUR # 04-7982 13

by the application. Our goals are to encapsulate all the needed changes for high-
performance MPI over TCP in the network interface hardware, the network interface
firmware, and modified operating system drivers. We aim to avoid any changes to the
MPI implementation itself or the application software that are specific to our hardware,
thus eliminating the need to continually re-implement MPI for each new class of systems.

To test the effectiveness of these techniques, we intend to add a TCP layer to LA-MPI.
This will enable us to understand the bottlenecks related to networking and network
interface and how the details of the network interface affect performance. We intend to
use that information to develop modified MPI implementations that use TCP efficiently
and can be well integrated with the newly designed network interfaces. Furthermore, we
are currently implementing a Gigabit Ethernet NIC using the Avnet Virtex II
development board, which includes an FPGA and an SO-DIMM slot. This will enable us
to show that the bottlenecks encountered by LA-MPI over TCP can be alleviated by
intelligent and programmable NICs and by improving the way the MPI library uses TCP.
We expect the innovations we propose using our flexible NIC to migrate into mainstream
network interfaces.

FY05 Tasks:

• Q1: Participate in the MPI community discussions on the semantics of process
failure and MPI, an initial implementation of a process recovery mode.

• Q2: Work on asynchronous progress and moving message processing to
communications co-processor (the Network Interface Card (NIC) in most cases).

• Q3: Investigate and experiment with strategies for moving the messaging
processing down to the NIC as makes sense in the implementation and hardware
layers.

• Q4: Explore elimination of overhead in OS support for messaging whenever
possible.

Wide Area Networking

 Beyond high performance networking in cluster interconnects, the ASC program is
increasingly relying on wide area networking to move data between researchers at their
home laboratories and the large shared facilities of the ASC program. To address this,
Feng (CCS-1) is working towards applying dynamic right-sizing to the Tri-Lab WAN,
thus automatically adapting to bandwidth availability. Part of this effort involves the
deployment of a network-monitoring infrastructure (MAGNET+Autopilot).

FY05 tasks:

• Q1: Port dynamic right-sizing (DRS), a technique for dynamic flow-control
adaptation from Linux to FreeBSD.

• Q3: Continue to research, test, and benchmark DRS with 10-Gigabit Ethernet in a
wide-area network-emulated environment.

• Q4: Analyze and improve how buffer space is managed and used in kernel- based
DRS.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 14

Future tasks:
• FY06Q3: Export the DRS technique to use space.
• FY06Q4: Adapt the MAGNET monitoring tool to enable resource-aware

visualization and applications in wide-area networks.

Messaging: Reliability and Utility

Contributors: Graham, Dongarra, Reed, Rixner

The general area labeled as “messaging” will address several items in fiscal year 2005.
The first quarter will focus primarily on finishing a working version of MPI for the cMPI
project. This will include a full implementation of all of MPI 1.2 and most of MPI-2 (less
the one-sided communications, for lack of time). This work will include, among others,
contributions from the FT-MPI project at the University of Tennessee, and the Resilient
Technologies team from LANL. The implementation is really aimed at putting in much
of the infrastructure needed for a fault tolerant MPI implementation, as well as a base that
can be used to experiment with alternative communication models. It will include the
hooks in the run-time system needed for creating new processes, moving processes, and
assisting in restoring lost processes. In addition, data fault tolerance, a reworked point-to-
point communications design that is better suited for network device fail-over, and the
data structures are needed to support MPI recovery from lost processes.

Other work will focus on process fault tolerance and scalability issues. The process fault
tolerance work will include participating in the MPI community discussions on the
semantics of process failure and MPI, an initial implementation of a process recovery
mode. We will continue to quantify failure modes on extreme-scale systems, as a guide to
software implementation. The scalability work will focus initially on two areas,
asynchronous progress and moving message processing to a communications co-
processor (the Network Interface Card (NIC) in most cases). Later scalability work will
also encompass the fault tolerant algorithms used, as previously this has involved global
coherency state models, which have traditionally affected scalability.

A longer-term issue will be the support of other protocols. For example, ARMCI is
emerging as a strong candidate for effective and efficient single-sided communication.

Clustering
Cluster technology, whether vendor-integrated, user-built Beowulf’s, or ad hoc
aggregations of workstations, have had a huge impact on parallel computing. Because
they are effective on many (not all) high-end applications, they have become the
backbone that provides capacity computing to LANL, DOE, and the nation.

In recent years, however, it has become apparent that we need a new generation of
clusters to improve productivity. Conventional clusters are labor intensive to set up,
administer, maintain, and upgrade; in many organizations much of the expense of these
activities is invisible because they are spread across staff other than designated system
administrators. Better approaches to system integration and system software are needed.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 15

Efficiency and manageability will improve the economics of small to moderate scale
systems for capacity computing, but they are absolutely necessary in order to build and
run scalable capability systems.

A promising approach to dealing with this issue is the single system image (SSI) model
of clusters. Initially under LACSI support, later from DOE Office of Science, the
Cluster Research Lab in CCS-1 pioneered the Clustermatic SSI software package. While
Clustermatic has evolved enough to be useful in production systems, there is still a
considerable amount of work to do. This work on the next generation of Clustermatic
spans a spectrum from speculative research to “nuts-and-bolts” development work.

Because of the breadth and scale of “next generation Clustermatic”, the academic
partners need be engaged in the effort. It is therefore important that Clustermatic test bed
systems be placed at each of the academic institutions. This will expose the academic
community to the issues (research, development, and operational) of building and using
SSI systems, and it will ensure that software efforts be consistent with mainstream
Clustermatic development.

Clustering: Performance

Participants: Minnich, Bridges, Fowler, Maccabe, Reed

Long-Term Issues

The community needs a robust, well-structured, and high-performance software stack to
drive high performance network interfaces, e.g., Infiniband, in the context of high
performance clusters for scientific computing. Existing open-source software is not
suitable. This will require a broad open-source effort.

FY05 Issues

An important goal is to improve the inherent scalable performance of Clustermatic
systems. Current Clustermatic systems use a single control node. This can become a
bottleneck and, while nodes have been very reliable, it represents a single point of failure.
In FY05 there will be an effort to extend Clustermatic to use multiple control nodes. This
will include both static and dynamic allocation of compute nodes to control nodes, and it
will involve the use of redundant sets of control nodes.

Application performance engineering requires a good performance instrumentation and
analysis infrastructure. HPCToolkit from Rice runs on current Clustermatic systems by
layering itself on top of PAPI from Tennessee. One problem with this approach is that it
allows one to look at internal performance of an application, but it does not provide a
system-wide view that captures all phenomena relevant to performance. We will
investigate adding such pervasive performance monitoring and analysis infrastructure
into Clustermatic systems. The approach taken will be to begin with the oprofil software
and extend and modify it to work on Clustermatic systems.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 16

FY05 Tasks:
• Add multiple control node capability to Clustermatic (LANL).
• Integrate a pervasive performance instrumentation system such as oprofil with

Clustermatic, and layer HPCToolkit on top (Rice).

Clustering: Reliability

Participants Include: ACL staff, Dan Reed, Jack Dongarra

As we noted in the application and system performance section, which starts on page 26,
our goal is to develop tools and approaches that can help applications achieve high
performance even when system components fail or applications are subject to other
system constraints. Strategies for automatic partition allocation and scheduling based on
performance and fault models offer the potential to enable long-running programs to react
more intelligently. Moreover, measurement of environmental conditions on nodes
promises to allow users and schedulers to balance checkpoint frequency and partition
allocation based on failure likelihood.

In collaboration with performance measurement and modeling activity, we will develop a
set of failure indicators, based on monitoring of the “node environment” (i.e., disk and
memory errors, temperature, etc). We will also explore how these indicators can be used
to differentially schedule applications based on checkpoint needs and expected execution
time.

The supermon facility needs a redesign. It needs to be able to incorporate user-defined
events and to correlate these with system events. The existing information delivery
mechanism needs work; the intention is to use V9FS as the information delivery
mechanism. This will help in the implementation of a download mechanism for setting
and changing configurations. The current sensor interface uses lmsensor, an interpreted
language; it is desirable to generate machine code here.

There is a need to address application reliability through support of compiler-driven
(assisted) checkpointing mechanisms. An alternative is "buddy" checkpointing. It is also
desirable to reconsider the "run-through" concept.

Support for dynamic application reconfiguration is desirable. This is a long-term goal.

As mentioned under the Performance section, above, multiple Bproc master/control
nodes on each Clustermatic system are needed for both performance and reliability. A
fail-over capability will be part of this.

Experience over the past year indicates that currently compute nodes have turned out to
be too reliable to worry about. Efforts at monitoring compute node health are therefore a
low priority task this year.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 17

Clustering: Utility

Participants: ACL staff and academic participants using “LACSI standard Clustermatic”

For Clustermatic systems to truly enter the mainstream will require more than addressing
the performance and reliability issues of the core system, as discussed previously. It will
require adding functionality through the development of system services that are well
integrated with the single system image (SSI) model presented by Clustermatic. It will
also require the addition of software tools to improve the productivity of users,
programmers, and administrators.

During FY05, the main work on improving the Clustermatic software environment will
be conducted by CCS-1 (ACL) staff using non-ASC funding. At the same time, LACSI
is procuring Clustermatic clusters at several of the academic sites to help build the
Clustermatic user community. The results of research and of software development at the
academic sites will thus be usable immediately on Clustermatic systems. Furthermore,
by introducing developers to Clustermatic, we will be exposing them to the issues of
using SSI systems and inspiring solutions to problems that arise. While we expect that
there will be some development of Clustermatic infrastructure as a side effect of research
and development in other areas, it is our intent that in the future this exposure will lead to
specific, funded activities aimed at extending Clustermatic functionality.

The following issues have been identified:

• Improved system administration on Clustermatic systems
o Work on tools needed to improve administrator/user productivity

• Improvements in the Single System Image
o Integrated (parallel) global file system
o Scripting in SSI vs. "pile of workstations" models

• File system semantics
o Provide private namespaces through the V9 FS. User-mode mounts add to

the namespace
o Improve the functionality of private namespaces so additions can be made

during execution and those additions propagated to all node namespaces
• Extend the BJS fast scheduling facility with familiar user interfaces, e.g., the LSF

API
• Users need ability to tailor runtime environments as needed

o "Modules" brought into the file system namespace
o Modules now set up environment variables; they need to set up the whole

environment

2004 LACSI Priorities & Strategies

LAUR # 04-7982 18

Computational Science
Doug Kothe (dbk@lanl.gov)
Beth Wingate (wingate@lanl.gov)
Bill Symes (symes@rice.edu)
Dan Sorensen (sorensen@rice.edu)
Mike Fagan (mfagan@rice.edu)
Lennart Johnsson (johnsson@cs.uh.edu)
Deepak Kapur (kapur@cs.unm.edu)

Overview
The Computational Science effort focuses on the development, analysis, and verification
and validation (V&V) of numerical solution techniques for physical models embodied
within large-scale multi-physics simulation tools designed to address today’s leading
problems in science and engineering. Key applications currently include the predictive
simulation of weapons manufacturing and performance as supported by the DOE
Advanced Simulation and Computing (ASC) Program and global climate modeling as
supported by the DOE Scientific Discovery Through Advanced Computing (SciDAC)
Program. The computational science effort can be divided into three principal research
thrust areas: algorithms and models for specific physical phenomena of interest,
numerical methods for the algorithmic coupling of these physical phenomena, and
metrics for correctness and robustness of these models and algorithms. The thrust areas
are:

1. Continuum Dynamics, Energy Transport, and Materials Science;
2. Multi-Physics Coupling; and
3. Methodologies for V&V, Sensitivity, and Uncertainty Quantification.

A key product of this effort, both in the long and short term, is verified and validated
software components constructed with defensible (demonstrable) software quality
engineering practices. These components must instantiate robust and accurate solution
techniques for the physical models required by the multi-physics simulation tools. The
computational science effort devoted to “multi-physics coupling” algorithm research is
necessary for the faithful simulation of multiple, simultaneously-occurring physical
phenomena.

Long-Term Goals

Ensuring computational science follows the fundamental principles of the scientific
method requires long-term investigation of numerical methods and algorithms and careful
software development. For example, a physicist or engineering analyst using these
simulation tools should be able to generate high fidelity three-dimensional simulations,
attain similar answers with two different numerical techniques, and be assured that each
technique has been verified and validated. Because the transformation of physical
principles into software can take many different paths, long-term research focuses on the
investigation of new, possibly high-risk, methods along with new ideas for the
improvement of classical methods that are parallel and scalable.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 19

Experience shows investigation of new methods must be built upon the foundation of
good software quality engineering. Unit-testing and component-based designs for even
one-dimensional tests are necessary to assess the impact of this long-term research on
next-generation simulation tools.

Long-term goals of the computational sciences effort include:

• Understanding the physics and mathematics of the phenomena to be simulated so
that improved numerical methods can be devised that are both robust and
accurate;

• Developing for the resulting physical models, new algorithms that possess good
single processor performance and are parallel and scalable;

• Instantiating these algorithms into component-based software as guided by sound
software quality engineering practices. Unit-testing is of primary importance
compared to reusability;

• Developing improved and automated methodologies for the verification of the
algorithms and the software, and the validation of the models; and

• Devising strategies for successful team software development of large-scale
simulation tools.

Short-Term Goals

In the short term (< five years), the Computational Science effort must complement the
LANL Computational Sciences effort, including the LANL ASC Computational Sciences
Program Element (CompSci PE). As one of eight PEs within the LANL ASC Program,
the principle mission of CompSci PE is to deploy verified and validated software
components embodying shock hydrodynamics, radiative and neutron transport, and
linear/nonlinear solvers. It must also deliver simulation tools for weapons performance
(the Marmot Project) and weapons casting and welding processes (the Telluride Project).
A notable short-term goal of the LACSI Computational Science effort is to deliver
software components to the three critical ASC “weapons performance code projects”,
known collectively as the Crestone, Shavano, and Marmot Projects. Short-term goals for
the computational science effort include:

• Development of a hybrid Monte Carlo deterministic transport capability
• Simulation of casting of the Qual Type 126 pit and comparison of the results of

the simulation to the available experimental data for the same process
• Development of a Capsaicin Project transport capability to the Marmot Project

(Capsaicin is a software project for a verified deterministic transport capability.)
• Development of an interface tracking interface component to the Crestone

Project.

These short-term goals feed into and provide enabling technology for other, higher-level
milestones within the LANL ASC Program. These technologies will also form the core
constituents of next-generation LANL weapons performance and manufacturing
simulation tools.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 20

Research Thrust Areas

Adaptive Numerical Methods for Diffusion and Transport Equations in
Heterogeneous Media on Distorted Polyhedral Meshes

Investigators: Yu. Kuznetsov (UH), J. Morel (CCS-2), G. Olson (CCS-4), and M.
Shashkov (T-7)

Efficient numerical methods for the diffusion and radiation transport equations in highly
heterogeneous media on general distorted polyhedral meshes is an important topic for
scientists and engineers working in computer simulation of complex physical
phenomena. This statement is very relevant to several research groups at LANL, for
instance, to the T-7 and CCS-4 groups, and at UH.

The project is based on the results of very successful cooperation between researchers at
LANL and at UH. In 2002-2003, Yuri Kuznetsov conceived of a fundamentally new
approach for solving the diffusion equations on general polygonal and polyhedral meshes
by the mixed finite element method. In 2003-2004, the idea of this method was applied
by researchers from LANL (M. Shashkov, J. Morel, and K. Lipnikov) and UH (Yu.
Kuznetsov) to design new accurate and physically consistent mimetic discretizations
based on the support operator method for the diffusion equations on polygonal meshes.
The resulting method represents a genuine breakthrough in the numerical solution of the
diffusion equations on arbitrary polygonal meshes including locally refined (AMR) and
nonmatching ones. The method is slated for implementation in certain ASC projects at
LANL. Extension of the method to polyhedral meshes with application to 3D diffusion
equations has been done recently (FY 2004).

In this project (FY 2005), we plan to continue joint research on development and
investigation of the proposed methods as well as on implementation aspects of the
method and LANL relevant applications.

Short-Term (FY 2005):

• To implement the proposed polyhedral discretization method and to evaluate its
accuracy and efficiency on 3D test problems relevant to ASC applications.

• To investigate convergence properties of the proposed methods and to derive a
posteriori error estimation for polygonal discretizations of the diffusion equations.

• To develop an AMR methodology based on posteriori error estimators for the
polygonal discretizations of the diffusion equations and to evaluate it on test
problems relevant to ASC applications.

• To develop, investigate, and evaluate on selected test problems the new multilevel
preconditioner based on macro-element coarsening in the space of the Lagrange
multipliers.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 21

Long-Term:
• The major long-term goal of the project is to develop, investigate and evaluate on

the test problems relevant to LANL applications, new adaptive mimetic
compatible discretizations and efficient parallel multilevel preconditioners/solver
for the diffusion and radiation transport equations in heterogeneous media on
strongly distorted polyhedral meshes.

Computational Methods for Free Boundary Problems: Application to Telluride

Investigators: R. Glowinski (UH), D. Kothe (LANL), S. Poole (LANL), A. Cabossat (UH
Research assistant), G. Guidoboni (UH Research assistant)

Telluride is an important LANL research project. It includes, among other components,
the numerical simulation of melting and free surface phenomena. The role of the UH free
surface group will be to investigate the implementation in the Telluride framework of
finite element and operator-splitting-based solution methods developed at University of
Houston and the Swiss Federal Institute of Technology in Lausanne by R. Glowinski and
A. Cabossat; indeed the VOF method developed at LANL is one of the ingredients used
by Cabossat for the simulation of melted aluminum flow. The finite element to finite
volume conversion of the above methodology will be investigated and its possible
parallelization as well.

Short-Term Goals:

• Identify significant two-dimensional free surface test problems.
• Develop finite-element-based solution methods.
• Investigate the finite element to finite volume partial or total conversion of these

methods.

Long-Term Goals:

• Generalization to 3-D phenomena. One of the major difficulties in this direction is
the accurate computation of the mean curvature of the free surface in order to
evaluate the surface tension forces. This problem is well understood in 2-D,
where the interface is a curve, but it is quite a challenge in 3-D.

Software Design for Coupled Simulation and Optimization
Investigator: Bill Symes (Rice)

Simulation driven optimization (SDO) is the core computational task in numerous
important technologies bearing on the LACSI mission, such as seismic risk analysis,
meteorological and oceanographic data assimilation, control of fluid flow in ducts and
channels, and design of castings and other manufactured items. Its salient characteristic is
the coupling of complex simulations with optimization software, bridging a wide variety
of abstraction levels. Conventional (procedural) programming of SDO applications
almost unavoidably transgresses these abstraction levels, bringing, for example, the data
structures of simulation into the optimization code, and vice versa, leading to code that is
difficult to maintain and usually impossible to reuse outside of its originating context.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 22

DoE and academic researchers have recently turned to modern software techniques,
including object and component orientation, to create reusable, maintainable, and
extensible code libraries for the SDO problem domain. An earlier project of this group,
the Hilbert Class Library, has served as a prototype for the Trilinos Solver Framework
(TSF), a major DoE SDO library. Interoperability is a critical issue in the construction of
libraries of this type, as all tend to implement the same abstractions incompatibly. We
have demonstrated interoperation of our current project, the Standard Vector Library
(SVL), with TSF and other DoE solver libraries, and identified design principles that
enable efficient interoperation. Current SVL-based projects include AlgPack, a
framework for iterative algorithm construction, and TSOpt, a timestepping library largely
automating implementation of adjoint state computations. TSOpt is specifically designed
to ease application of Automatic Differentiation to SDO problems.

SVL's design is intrinsically compatible with client-server applications, and we have
demonstrated parallel servers. A very important immediate goal is construction of SVL-
compatible interfaces for DoE distributed computing libraries, so that existing simulators
may be easily ported into SVL-based SDO applications.

Short-Term Goals:

• Parallel server design using DoE libraries
• Implementation of time-dependent flow control in parallel
• Identification of LACSI-focused application

Long-Term Goals:

• Integration of SVL into Trilinos, either as a package or as a set of ideas;
dissemination within labs

• Collaboration with Telescoping Languages project to enable cross-method
optimizations, including loop fusion

Numerical Linear Algebra for Large Systems

Investigators: D.C. Sorensen (Rice), Nadiga (CCS-4), Jim Morel (CCS-4), Rob Lowrie
(CCS-2), Dana Knoll (T-3), John Turner (CCS-2), and Beth Wingate (CCS-2)

This project is concerned with the development of methods and software for large
eigenvalue problems and related applications. The project will extend the capabilities of
the highly successful P_ARPACK eigenvalue software. This software executes on
massively parallel systems and provides enabling technology in numerous application
areas. It also can serve as an excellent test bed and point of interaction for new compiler
technology.

In particular, we are interested in subspace projection techniques for the development of
dimension (order) reduction methods in dynamical systems and control. We have been
developing projection methods that are closely related to the Krylov projection
techniques used in large eigenvalue computations.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 23

Dimension Reduction Software as a Test Bed for the Telescoping Language Project

In support of the telescoping languages project, we are developing a collection of
software for model order reduction of dynamical systems in Matlab. Model reduction
seeks to replace a large-scale system of differential or difference equations by a system of
substantially lower dimension that, ideally, has the same response characteristics as the
original system, yet requires far fewer computational resources for realization. Such
large-scale systems arise in circuit simulation; they also arise through spatial
discretization of certain time dependent PDE control systems. Our work is focused on the
development, analysis, and implementation of reduction methods for very large
problems, control problems in particular.

This software will be an important contribution in its own right, but our intent with this
work is to develop the software in a style that is amenable to the telescoping language
approach. It should serve as a prototype and as a test bed for the development of compiler
technologies and library designs that will make it possible to automatically construct
domain-specific development environments for high-performance applications. A goal of
the project is demonstrate the feasibility of developing and maintaining an application
library written in Matlab that can be used to automatically generate a platform specific
optimized version. Such a demonstration would validate the potential of the telescoping
language approach.

This project builds upon and extends the applicability of our prior work on large-scale
eigenvalue methods. We have developed reduction schemes based upon Krylov
projection and also upon gramian-based methods for dimension reduction. Our codes
will include methods for approximate balanced reduction of large-scale linear dynamical
systems. It will also include methods for structure preserving reduction. Reduction of
second order systems that preserves the second order form and reduction of passive
systems that preserves passivity are two important examples.

Consultation on the Numerical Solution of Large-Scale Eigenvalue Problems

Our past work on eigenvalue methods and software are somewhat mature at this point.
Nevertheless, there are still important research topics to investigate. Most notably, the
development of techniques for accelerating convergence, such as approximate shift-invert
preconditioners, is still an active research area.

Within the scope of this project, the focus will be less in the development direction and
more in the consultation arena. Some areas that might benefit by this activity are:

• Linear and Nonlinear Solvers

The efficiency of a Newton-Krylov method is generally dependent upon the
quality of the linear system preconditioner. The best preconditioners incorporate
problem-specific information. We believe that the information obtained from the
linear stability analysis can be used to build a better Newton-Krylov
preconditioner.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 24

We believe one can use eigenanalysis to help design improved linear system
preconditioners that are adaptive. These preconditioners could be integrated into
the design of a Newton-Krylov solver. One approach is to introduce eigenvalue
deflation techniques as a way to mitigate restarted GMRES convergence
problems.

• Eigenanalysis in Transport

The k-eigenvalue estimations utilized in neutron transport would be an interesting
application of our eigenvalue software. It would be interesting to obtain from Jim
Warsa sample linear systems arising in neutron transport k-eigenvalue
calculations (performed by LANL's Attila software).

If the need for consultation or collaboration arises in these areas, we will address those
needs.

Short-Term Goals:

• Develop an implementation of a Modified Multi-shift Smith Method for
approximate solution of large Lyapunov equations.

• Develop a code for balanced reduction based on the Modified Smith Method.
• Collaborate with the Telescoping Languages project on refining the structure of

these codes.

Long-Term Goals:

• Develop a complete collection of model reduction software in a style that is
compatible with the constructs required by the Telescoping Language project.

• Collaboration with Telescoping Languages project to enable cross-method
optimizations, including loop fusion.

Code-Based Sensitivity Analysis

Investigators: M. Fagan (Rice), R. Henninger (CCS-2), Ken Hanson (CCS-2), Jim
Sicilian (CCS-2), John Turner (CCS-2), Ralph Nelson (X4)

One of the major priorities of the Los Alamos mission is to validate and verify (“V & V”)
the highly complicated computer programs used to model equally complicated physical
processes. Moreover, one of the major tools in the verification and validation process is
sensitivity calculation. Consequently, the overall priority of the code-based sensitivity
analysis project is to develop methods for accurately and efficiently computing
sensitivities of complex scientific simulation programs.

Short-Term Goals:

The short-term goals for the code-based sensitivity effort are related to the following
projects at Los Alamos: The Telluride Project directed by Jim Sicilian (technical
point-of-contact is Rudy Henninger), the Shavano Project (POC Ralph Nelson), and
the Marmot Project. The short-term goals are:

2004 LACSI Priorities & Strategies

LAUR # 04-7982 25

• Assist in the application of Adifor to current Fortran 77 codes throughout LANL.
• Continue to extend the Adifor technology to cover more of Fortran 90, so that

accurate sensitivity calculations can be easily generated for the Truchas code of
the Telluride Project.

• Ensure that Adifor technology may be applied to the extended Fortran 77, Fortran
90, and C mechanisms used in FLAG (and FLAG-like) codes of the Shavano
Project. The main thrust of this effort is to provide seamless, integrated AD across
commonly used languages.

• Ensure that Automatic Differentiation-based methods for estimating roundoff
error in simulation codes are available. In particular, roundoff error estimation
should be part of the unit testing for codes (like Marmot) that are under
development.

Long-Term Goals:

• Applying automatic differentiation for verification of ODE-based and PDE-based
computer models.

• Applying automatic differentiation in the construction of Newton-Krylov solvers.
Newton-Krylov solvers need directional derivatives. Typically, these directional
derivatives are computed using a matrix-free finite difference method. Our
proposed alternative is to use automatic differentiation to compute the directional
derivatives.

• Applying AD to programmatic right-hand sides in the context of verification by
the method of manufactured solutions (MMS).

• Developing ATOM-style automatic differentiation for object code.
• Extending Adifor-style automatic differentiation to additional programming

languages, notably Fortran 2000 (when it becomes available), Java, C, and C++.
The CartaBlanca project, in particular, has expressed interest in Java.

• Supplying automatic differentiation for scripting languages such as Python (and
possibly Perl and Ruby). At this point, the question of Adifor-style AD versus
some other method is not clear.

• Extending the augmentation paradigm to include other sensitivity measures such
as intervals or probability distributions.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 26

Application and System Performance
Adolfy Hoisie (hoisie@lanl.gov)
John Mellor-Crummey (johnmc@rice.edu)
Keith Cooper (keith@rice.edu)
Jack Dongarra (dongarra@cs.utk.edu)
Robert Fowler (rjf@rice.edu)
Guohua Jin (jin@rice.edu)
Dan Reed (Dan_Reed@unc.edu)
Linda Torczon (linda@rice.edu)

Building scientific applications that can effectively exploit extreme-scale parallel systems
has proven incredibly difficult. The sheer level of parallelism in such systems poses a
formidable challenge to achieving scalable performance. In addition, the architectural
complexity of extreme-scale systems makes it hard to write programs that can fully
exploit their capabilities. In today’s extreme-scale systems, complex processors, deep
memory hierarchies and heterogeneous interconnects require careful scheduling of an
application’s operations, data accesses, and communication to enable the application to
achieve a significant fraction of a system’s potential performance. Furthermore, the large
number of components in extreme-scale parallel systems makes component failure
inevitable; therefore, long-running applications must be resilient to hardware faults or
risk being unable to run to completion.

The principal goals of the application performance research thrust are:

• understanding application and system performance on present-day extreme-scale
architectures through the development and application of technologies for
measurement and modeling of program and system behavior,

• devising software strategies to ameliorate application performance bottlenecks on
today’s architectures,

• modeling the behavior of applications to understand factors affecting their
scalability on future generations of extreme-scale systems, and

• investigating software technology that will enable higher performance on next-
generation, extreme-scale parallel systems.

A broad spectrum of issues affects application performance, including operating system
activity, load imbalance, serialization, underutilization of processor functional units, data
copying, poor temporal and spatial locality of data accesses, exposed communication
latency, high communication frequency, and large communication bandwidth
requirements. A quantitative assessment of factors limiting application performance on
current-generation architectures will help focus long-term research on software and
hardware technologies that hold the most promise for improving application performance
and scalability on future systems. A multitude of challenging problems must be solved to
understand how to best implement scientific applications so that they can achieve
scalable high performance on extreme-scale parallel systems.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 27

As part of this research thrust, the project team will explore application performance on
many fronts and undertake a program of research that aims to develop technologies to
support measuring, modeling, understanding, tuning, and steering application
performance on current and future generations of extreme-scale parallel architectures.
This work will address all aspects of performance and reliability spanning system
architecture, network, and applications. Our investigation will include work on both
scalability and node performance. The findings from this research, as well as tools and
software infrastructure developed as products of this effort, are expected to benefit all
ASC application teams by providing them with more efficient programming models,
technology for compiler-assisted tuning of applications, better performance
instrumentation and diagnostic capabilities, insight into the performance and scaling of
applications and systems through modeling, improved algorithm-architecture mapping,
and better performing extreme-scale parallel architectures.

Modeling of Application and System Performance
Investigators: Adolfy Hoisie, John Mellor-Crummey and Robert Fowler

The modeling of high performance software and hardware systems is highly complex,
requiring the encapsulation of key processing structures and characteristics. This is a
direct result of the performance space being multi-dimensional and highly non-linear in
any of its dimensions. As a result, accurate models such as the ones developed by PAL at
Los Alamos are the performance tool of choice in gaining insight into the performance of
applications and systems.

The research in this area will span a wide range of topics. First, we will continue the
application modeling work so that all important types of computations (and their
associated application software) are accurately modeled. The next step in this endeavor is
modeling of non-deterministic applications such as Monte-Carlo transport.

Second, a major thrust will be in the enhancement of the models to include detailed
effects of the operating system, architectural features, and system activity. Based on a
novel methodology developed by PAL (which led to major performance improvements
on the ASCI Q machine) we will include this capability directly in our application
models.

Third, we will look into using our models to do application steering, complementing
other proposed steering approaches being explored by Rice and UNC. For this to be
possible, models will have to become dynamic and incorporate runtime information from
the hardware performance monitors and other sources (e.g., NICs) as the application
executes.

Fourth, we will undertake the task of trying to simplify model creation. We will attempt
to provide a mechanism for: aiding model creation, enabling model description,
undertaking model evaluation, and allowing for model incorporation into code. These
capabilities will provide a “tool” basis for performance modeling, easing their creation
and use, while at the same time allowing performance models to accumulate within a

2004 LACSI Priorities & Strategies

LAUR # 04-7982 28

coherent structure rather than having a sequence of one-off studies. The focus of this
aspect of the research will be on designing, building and evaluating semi-automatic tools
for synthesizing models and model components, as well as on exploring how to integrate
model components synthesized automatically into hand-crafted model frameworks.

Fifth, we will concentrate on the numerous applications of the models we developed. The
resulting performance models can be used for scalability analysis on both existing and
proposed future architectures, in procurement to compare proposed alternatives, in
software development to ascertain the performance impact of code re-configuration prior
to implementation, and in real-time to steer the processing of code to increase processing
efficiency. Accurate models are a valuable tool for architecture design. We plan to apply
models of the ASC workload to propose and design advanced architectures that maximize
the performance of this workload.

Short-Term Tasks:

• Continue to work by LANL PAL team on analysis and modeling of applications
in the ASC workload. That work will be broadened to include other ASC types of
computations such as non-deterministic applications.

• Continue the PAL team’s active research effort in expanding the models to
include an accurate account of system effects.

• Further enhance LANL’s performance modeling methodology by expanding the
research into building tools designed to simplify the modeling methodology.

• Evaluate relative accuracy of cross-architecture predictions of node performance
for different architectures.

• Refine capabilities for modeling and prediction of an application’s memory
hierarchy performance for a range of architectures for different problem sizes.

• Explore combining single-processor/node modeling efforts of Rice and LANL
with the goal of creating a predictive single processor performance capability
applicable to ASC applications and microprocessors of interest to the program.

Building applications that can effectively exploit extreme-scale parallel systems has
proven very difficult: Massive parallelism poses major challenges in achieving scalable
performance; architectural complexity (complex processors, deep memory hierarchies,
heterogeneous interconnects) is difficult for applications to exploit effectively; at this
scale component failure is inevitable, so long-running applications must be resilient in
order to run to completion.

Better Tools for Measurement and Analysis of Application Performance
Investigators: Robert Fowler, John Mellor-Crummey and Dan Reed

On terascale systems, performance problems are varied and complex. Hence, a wide
range of performance evaluation methods must be supported. The appropriate data
collection strategy depends on the aspect of program performance under study. Key
strategies for gathering performance data include statistical sampling of program events,
inserting instrumentation into the program via source code transformations, link time
rewriting of object code, or binary modification before or during execution.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 29

Capturing traces of program events such as message communication helps characterize
the temporal dynamics of application performance; however, the scale of these systems
implies that a large volume of performance data must be collected and digested.
Improved data collection strategies are needed for collecting more useful information and
reducing the volume of information that must be collected. Statistical sampling provides
a formal basis to achieve desired estimation accuracy under a certain measurement cost.
We will investigate the feasibility of using statistical sampling and population dynamics
techniques to characterize performance on large systems. This approach will enable
tunable control of measurement accuracy and instrumentation overhead. Concurrently,
we will explore application of these techniques to the temporal domain, with a goal of
bounding temporal performance trajectories.

Research problems to be addressed include determining the appropriate level for
implementing different instrumentation and measurement strategies, how to support a
modular and extensible framework for performance evaluation, as well as the appropriate
compromise between instrumentation cost, the level of detail of measurements, and the
volume of data to be gathered.

Current tools for analysis of application performance on extreme-scale systems suffer
from numerous shortcomings. Typically, they provide a myopic view of performance
emphasizing descriptive rather than prescriptive data (i.e., what happened rather than
guides to improvement), and they do not support effective analysis and presentation of
data for extreme-scale systems. To help users cope with the overwhelming volume of
information about application behavior on extreme-scale systems, more sophisticated
analysis strategies are needed for automatically identifying and isolating key phenomena
of interest, distilling and presenting application performance data in ways that provide
insight into performance bottlenecks, and providing application developers with guidance
about where and how their programs can be improved.

Comparing profiles based on different events, computing derived metrics (e.g., event
ratios), and correlating profile data with routines, loops and statements in application
code can provide application developers with insight into performance problems.
However, better statistical techniques are needed for analyzing performance data and for
understanding the causes and effects of differences among process performance. Instead
of modeling each system component, these techniques select a statistically valid subset of
the components, and model the members of that subset in detail. Properties of the subset
are used as a basis in estimates for the entire system. Our research in this area, so far, has
focused on system availability. We plan to expand that scope and apply these techniques
to study application performance. The main goal is to evaluate how well application
performance can be characterized and understood, based on a more efficient data
collection scheme.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 30

Short-Term Tasks:

• Explore integrating information about dynamic execution context (i.e., call paths)
into HPCToolkit and explore strategies for analyzing and presenting such profiles
for large applications.

• Explore using statistical clustering of node performance measurements of parallel
applications to reduce the complexity of analyzing programs with large-scale
parallelism.

• Investigate statistical sampling for extreme-scale systems, emphasizing tunable
control of measurement accuracy and overhead; integrate ideas and software for
sampling with the SvPablo toolkit.

• Interact with LANL application researchers to (i) characterize the behavior of
their applications executed on large-scale systems, and (ii) explore opportunities
for performance improvements based on the findings produced by this
characterization.

• Continue refinement of the PAPI interface for accessing hardware performance
counters. The goal of this effort is to provide a robust implementation of PAPI
including features such as thread safety, counter multiplexing, and counter-driven
user callbacks on important computing platforms.

• The academic performance analysis team will continue to hold performance tools
workshops at LANL if the applications teams or LANL management believe
additional such workshops would be productive. These workshops serve three
purposes. First, they help application teams use tools developed by the academic
members of LACSI to understand how their choices of data structures and
algorithms affect performance. Second, they provide an opportunity for cross-
disciplinary working groups to examine ASC workload exemplars and exchange
ideas. Third, they provide valuable feedback to the performance team about
opportunities for enhancing tool capabilities.

Automatic Application Tuning
Investigators: Keith Cooper, Ken Kennedy, John Mellor-Crummey and Linda Torczon

Increased complexity in both applications and architectures has created an environment
in which producing effective code is difficult. The classic software production cycle, in
which an application is compiled once at a high-level of optimization, is no longer
sufficient to produce high-quality executable code. Systems that use run-time adaptation,
such as ATLAS, or that generate code tailored for specific problem instances, such as
UHFFT, demonstrate that adaptive strategies can produce consistently good results.
Building tools that incorporate and automate such adaptation is a major challenge. The
goal of this project is to achieve results comparable to those of ATLAS or UHFFT using
automatic techniques—thereby making the benefits of such adaptation available over a
wider range of applications. (This goal stands in contrast to the work described
previously, which aims to generate additional software libraries that implement their own
adaptive behavior. Success in this project will complement success in that project.)

2004 LACSI Priorities & Strategies

LAUR # 04-7982 31

Adaptive Optimization Strategies: Modern compilers use a handful of strategies to
improve each optimization. Typically, they apply the same strategies to all programs. For
example, GCC supports three levels of optimization, –O1, –O2, and –O3, each
representing a fixed strategy. Recent work has shown that program-specific strategies
can produce consistently better code; several studies suggest that the improvements from
program-specific strategies range up to 25% over any fixed strategy.

The problem with program-specific strategies lies in the cost of discovering them. One
goal of this project is to develop cost-effective techniques to discover and apply program-
specific optimization strategies. The work includes strategies for compiler configuration
(e.g., both the set of optimizations to run and an order in which to apply them), for
determining command-line parameter settings (e.g., GCC offers roughly fifty individual
flags that can control different aspects of the individual passes), and for controlling the
application of specific optimizations (e.g., loop blocking or inline substitution).

Performance-based Optimization Strategies: Recent work in performance analysis and
modeling has enabled tools to identify performance bottlenecks in an application. Tools
such as the HPCToolkit can use hardware performance counters to pinpoint both a region
and a problem, as in “this inner loop has excessive L2 cache misses.” Classic optimizing
compilers have no way to target such problems; in particular, techniques to ameliorate
one region’s problem may exacerbate the problems of another region.

Performance-based optimizations will combine a regional approach to applying a
particular transformation (as opposed to uniform application across an entire procedure)
with a feedback-based steering mechanism that selects transformations and regions based
on actual or predicted performance problems.

Research is needed into a spectrum of technologies to support effective whole program
tuning. This research will include techniques to identify regions of inefficiency and to
pinpoint symptoms of inefficiency (e.g. excessive TLB misses in a particular loop),
strategies for coordinated application of integrated code transformations to ameliorate
program bottlenecks, and search techniques for determining what the next step should be
to tune the program based on the results of tuning attempts thus far.

Short-Term Tasks:

• Deliver a prototype tool for automatically tuning whole applications for the x86
architecture based on feedback from empirical performance measurements. The
tool will use the HPCToolkit package for collecting performance measurements
and will use a search strategy to tune transformation parameters such as tile sizes
and unroll factors to direct LoopTool.

• Demonstrate applicability of adaptive compilation sequences in compilers other
than our research prototype. We will work within the LLVM system to show the
improvements from optimization choice. We will experiment with adaptive
compilation sequences in Microsoft’s new Phoenix compiler infrastructure.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 32

• Explore adaptive techniques for control of an individual optimization. We will
complete our study of adaptive control of source-to-source inline substitution. We
will release our prototype adaptive inliner as a standalone tool.

• Expand our experiments on compilation-order decisions to include source-level
application properties. We will develop source-level metrics and try to correlate
them with effective compilation sequences.

Compiler Technology for Exploiting Modern Processors
Investigators: Keith Cooper, Ken Kennedy, John Mellor-Crummey, and Linda Torczon

To keep pace with the Moore’s law curve and deliver 60% annual increases in processor
performance, architects have increased the complexity of commodity processors and the
memory systems that surround them. To produce code that achieves a significant fraction
of peak performance on a modern commodity processor (e.g., Pentium, IA-64, Opteron,
SPARC, or MIPS), a compiler must apply a complex series of transformations to the code
(optimization) and then translate the result into the appropriate assembly code (code
generation). To create code that executes efficiently, the compiler must address a number
of challenging problems.

• The code must keep the functional units busy. The optimizer must transform the input

program so that it has enough instruction-level parallelism to sustain the computation
rate as well as an appropriate instruction mix. The code generator must discover a
dense instruction schedule for the final code—it may need to use different scheduling
algorithms for different points in the code, making the choice on a loop-by-loop or
block-by-block basis.

• The optimizer must transform the code so that its pattern of memory accesses
matches those of the processor and memory system—adjusting locality with
blocking, prefetching, and (perhaps) streaming. After the optimizer has rewritten the
code so that it can move sufficient data onto the chip in a timely fashion, the code
generator must manage instruction and data placement so that operands are kept in
appropriate registers and, for clustered register-file machines, in the cluster where the
operand is consumed.

• Finally, the optimizer and the code generator must work together to make effective
use of processor features such as predicated execution, register windows, register
stacks, auto-increment options, branch-delay slots, and hints to the hardware about
locality and branch targets.

Research on this project is aimed at developing new techniques to address these
problems—techniques suitable for implementation in either open source or commercial
compilers, and at improving the quality of optimization and code generation available in
both open source and commercial compilers for commodity processors used in high-
performance computing.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 33

Short-Term Tasks:
• Continue our experiment with automatic choice of command-line parameters for

IA-64 compilers (both ORC and the Intel compiler). As a first step, we will
quantify the potential improvement from manipulating parameter settings. As a
second step, we will package those results in a tool that automatically finds
appropriate, application-specific parameter settings.

• Investigate the use of dynamic reoptimization to improve performance on
scientific codes. We will use the LLVM framework (support for Pentium,
PowerPC, and Sparc, with Opteron in process) in this work. We will release new
(and improved) register allocators for LLVM in source-code form. We will
begin development of an advanced scheduler for LLVM.

• Investigate the use of algebraic reassociation in conjunction with strength
reduction to reduce the number of integer instructions created in critical blocks.
We will work with partners at LANL to identify critical loops that schedule
poorly due to instruction mix and develop reassociation strategies to reduce the
operation count.

Application Mapping, Dynamic Adaptation and Steering
Investigators: Dan Reed, Ken Kennedy and John Mellor-Crummey

As computer systems grow in size and complexity, tool support is needed to facilitate the
efficient mapping of large-scale applications onto these systems. Today, most
applications are mapped to a set of resources at program launch and then run to
completion using these resources. However, large-scale systems built from commodity
components are prone to failure and long-running applications for such systems must
sense and respond to component failure.

Intelligent mapping and performance steering offer an opportunity to adjust a running
program for more efficient execution and to adapt to changing resource availability (e.g.,
due to component failures or resource sharing). A challenge is to develop strategies that
enable applications running on ASC-scale systems to monitor their own behavior and
reactively adjust their behavior to optimize performance according to one or more
metrics. For this purpose, performance analysis tools must provide robust performance
observation capabilities at all levels of the system and the ability to map low-level
behavior to high-level program constructs.

Our goal is to develop tools and approaches that can help applications achieve high
performance even when system components fail or applications are subject to other
system constraints. Strategies for automatic performance steering based on performance
and fault models offer the potential to enable long-running programs to repeatedly adjust
themselves to changes in the execution environment – perhaps to opportunistically
acquire more resources as they become available, to rebalance load, or to adapt to
component failures. Moreover, measurement of environmental conditions on nodes
promises to allow users and schedulers to balance checkpoint frequency and partition
allocation based on failure likelihood.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 34

In addition, validated performance “contracts” among applications, systems, and users
that combine temporal and behavioral reasoning from performance predictions, previous
executions, and compile-time analyses are one promising approach. This work will
explore using performance contracts to guide the monitoring of application and resource
behavior; contracts will include dynamic performance signatures and techniques for
locally (per process) and globally (per application and per system) evaluating observed
behavior relative to that expected.

Short-Term Tasks:

• Explore techniques for measuring environmental conditions on the nodes of
extreme-scale systems, as a basis for guiding scheduling and resource partitioning
decisions.

• Investigate extended partition allocation and scheduling based on environmental
predictors, including failure probabilities, for integration with batch schedulers

• Demonstrate adaptation techniques for multi-attribute system behavior, including
power management.

Compiler Technology for Extreme-scale Systems
Investigator: John Mellor-Crummey

Today, MPI is the dominant programming model for writing scalable parallel programs.
MPI has succeeded because it is ubiquitous and it makes it possible to program a wide
range of commodity systems efficiently. However, as a programming model for extreme-
scale systems, MPI has numerous shortcomings. For instance, when using MPI, the
programmer must assume all responsibility for communication performance including
choreographing asynchronous communication and overlapping it with computation. This
complicates parallel programming significantly. Because of the explicit nature of MPI
communication, significant compiler optimization of communication is impractical.
Programming abstractions in which communication is not expressed in such a low-level
form are better suited to having compiler optimization play a significant role in
improving parallel performance. Also, when one uses MPI, only coarse grain
communication is efficient; this has a profound impact on the way programs are
structured. When an architecture supports a global name space and fine-grain low latency
communication, other program organizations can be more efficient.

Global address space programming models are likely to emerge as the simplest to
program and most efficient for emerging systems such as Cray’s Red Storm and future
systems that arise out of DARPA’s HPCS project. SPMD global address space
programming models such as Co-array Fortran (CAF) and Unified Parallel C (UPC) offer
promising near-term alternatives to MPI. Programming in these languages is simpler: one
simply reads and writes shared variables. With communication and synchronization as
part of the language, these languages are more amenable to compiler-directed
communication optimization. This offers the potential for having compilers assist
effectively in the development of high performance programs. Research into compiler

2004 LACSI Priorities & Strategies

LAUR # 04-7982 35

optimizations for SPMD programming languages offers the potential of not only
simplifying parallel programming, but also yielding superior performance because
compilers are suited for performing pervasive optimizations that application
programmers would not consider employing manually because of their complexity. Also,
because CAF and UPC are based on a shared-memory programming paradigm, they
naturally lead to implementations that avoid copies where possible; this is important on
modern computer systems because copies are costly. Beyond explicitly parallel SPMD
programming models, data-parallel models such as High Performance Fortran and Cray’s
Chapel language offer an even simpler programming paradigm, but require more
sophisticated compilation techniques to yield high performance. Research into compiler
technology to increase the performance and scalability of data-parallel programming
languages as well as broaden their applicability is important if parallel programs are to be
significantly simpler to write in the future. For parallel programming models to succeed,
their use and appeal must extend beyond just extreme-scale machines; therefore,
sophisticated compiler technology is needed for these languages to make them perform
well on today’s relatively loosely-coupled clusters as well as tightly-coupled petascale
platforms of the future.

Long-Term Tasks:

• Explore data-parallel language constructs that make it simple to express a wide
range of parallel programs at an appropriate level of abstraction.

• Evaluate the expressiveness of these languages for problems of interest to ASC
and the broader high-performance computing community.

• Devise effective code generation techniques for these languages with an eye
towards the full range of future parallel systems, namely very tightly-coupled
extreme-scale systems envisioned in DARPA’s HPCS program, moderately
tightly-coupled systems composed of commodity processors with high-
performance interconnects (e.g. Red Storm and Blue Gene/L), as well as more
loosely coupled commodity clusters.

• Evaluate the how well code generation strategies deliver high performance.
• Understand the interplay between language features, application structuring

techniques, code generation challenges and application performance.

Short-Term Tasks:

Global address space languages such as UPC and CAF are relatively immature, as is
compiler technology to support them. Research on UPC and CAF will focus on the
following issues:
• Language primitives. UPC and CAF need refinement so that they can

conveniently and efficiently express a wide range of programs and parallelization
schemes in a portable fashion. Both need support for collective communication
and perhaps atomic operations. CAF needs primitives for split-phase
synchronization and locks. Language support for hierarchical locality domains
may be useful for large-scale NUMA systems. Augment synchronization
primitives with optional tags to show how synchronizations may match at
runtime.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 36

• New analysis and optimizations for SPMD programs. Optimizations that
transform or combine synchronization and data movement (e.g., synchronization
strength reduction or combining a put with a notify) will boost performance. For
UPC, more effective analysis and transformation of code using global pointers is
needed.

• Compiler support for latency tolerance. Today’s parallel programs often
communicate or perform I/O in synchronous bursts, stalling computation until the
operation completes. Compiler-directed latency hiding (transforming synchronous
communication and I/O into asynchronous form and overlapping them with
computation) is needed to increase code efficiency.

• Performance portability. For SPMD language models to be widely adopted, they
must be suited for high performance on lower-cost clusters as well as tightly
coupled HPCS systems. Satisfying this goal will require research and
development of code generation algorithms for tailoring code to architectures with
a broad range of different communication latency, bandwidth and granularity
characteristics.

• Runtime mechanisms. A variety of issues will be explored to optimize execution
efficiency including communication mechanisms (e.g. fine-grained direct
load/store communication) and using virtualization to improve load balance and
latency tolerance.

Higher-level data-parallel programming models such as HPF and Chapel pose
significant challenges to compilers. Generating flexible high-performance code that
runs effectively on a parameterized number of processors is a significant problem.
Continue to investigate analysis and code generation techniques with the aim of
having compilers transform complex programs that use sophisticated algorithms into
parallel programs that yield scalable high performance on a range of parallel systems.

• Explore algorithms for effectively partitioning computation in the presence of
complex data partitionings and dependence patterns.

• Continue to investigate analysis and code generation strategies with the aim of
improving node performance of code for sophisticated algorithms such as
multigrid.

• Explore the implications of multiple levels of parallelism, e.g. combining task and
data parallelism within an application.

2004 LACSI Priorities & Strategies

LAUR # 04-7982 37

Computer Science Community Interaction
Linda Torczon (linda@rice.edu)
Jack Dongarra (dongarra@cs.utk.edu)
Rob Fowler (rjf@rice.edu)
Lennart Johnsson (johnsson@cs.uh.edu)
Deepak Kapur (kapur@cs.unm.edu)
Ken Kennedy (ken@cs.lanl.gov)
Rod Oldehoeft (rro@lanl.gov)
Dan Reed (Dan_Reed@unc.edu)

LACSI is a collaborative research effort between Los Alamos National Laboratory, Rice
University, the University of Houston, the University of New Mexico, the University of
North Carolina, and the University of Tennessee at Knoxville. Effective means of
supporting collaborations are important to the success of LACSI. To support
collaboration, LACSI will provide a variety of opportunities for researchers from LANL
and the academic partner sites to visit each other, to share ideas, and to actively
collaborate on technical projects.

In addition, LACSI will organize, host, and otherwise support a series of technical
workshops on topics related to the LACSI technical vision. This will include a series of
workshops at LANL targeted at exposing application researchers to emerging
technologies.

LACSI will also host an annual symposium to showcase LACSI results and to provide a
forum for presenting outstanding research results from the national community in areas
overlapping the LACSI technical vision. This will be a traditional conference-style
meeting with participation by both LACSI members and scientists from the community at
large.

We will also coordinate a technical infrastructure between LANL and the academic
partners, enabling web broadcasting of local technical talks, workshops, and the annual
symposium to an off-site audience.

