
Page ‹#›

Improving Code Quality
Developing & Deploying New Ideas

Keith D. Cooper
Rice University

Department of Computer Science

http://lacsi.rice.edu/review/slides_2006

Participants:
Linda Torczon, Devika Subramanian, Tim Harvey, Steve Reeves
Alex Grosul, Todd Waterman, Anshuman DasguptaJason Eckhardt, Jeff Sandoval, and Yi Guo

Background
• Our group is funded under both performance & components

— Better compiler techniques for microprocessor based systems
— Automatic application tuning through adaptive compilation

• Focus on development & deployment
— Invent new code optimization techniques

– Improve runtime performance
– Broaden suite of codes that achieve “good” performance

— Transfer technology into important compilers
– Widely used open source systems & vendor compilers
– Model implementations to guide commercial

• Three examples
— Instruction mix, register allocation, adaptive inline substitution

Changing Instruction Balance
Motivation: Some of the performance critical loops in Sweep3D have

a low ratio of useful (floating point) ops to total ops

Question: Can we transform them to improve performance?
— Mellor-Crummey rewrote loops in SAGE to cure similar problems
— Can we develop automated techniques to achieve similar results that

are suitable for use in compilers such as gcc or Intel’s compilers?
– Low-level automatic techniques would help a variety of codes

• Launched a study that tried novel combinations of
̶ Algebraic reassociation

— Strength reduction

— Code motion

• We have not had much success
— Subject of continuing research

Based on prior experience, we
believed that we could reduce
the overhead from addressing &
control flow

Developing new techniques

Register Allocation
Motivation: High-quality register allocation plays a critical role in

single-processor performance
— Open-source systems have a history of using weak algorithms

Goal: Move best practices into important open-source systems
— Direct performance benefits for most programs

Activities in the Last 18 Months
• Advised implementor of gcc’s “new-ra”

— Uses many of our algorithms & data structures

• Built two new global allocators for LLVM
— LLVM is a strong contender for next-generation gcc backend
— Implementations show how to adapt allocators for x86 ISA
— IP issues complicate the distribution process (working on it)

• Made fundamental algorithmic improvements
— Better coalescing, faster graph updates for JIT environments

Technology transfer

Page ‹#›

adpcm-coder (plosn)
625 point subspace

Adaptive Compilation (Background)
• Today’s compilers apply fixed set of passes in a fixed order

— No relationship to mathematical notion of optimization

• Our systems look for “good” optimization sequences
— Feedback-driven search over large, complex spaces
— 20 to 40% improvement over fixed sequence optimizers
— Reduced cost for “good” sequence from 20,000 evaluations to ≤ 250

• Developed search techniques that capitalize
on properties of the search spaces
— Large scale studies to learn properties
— Efficient searches for different cost points
— Randomized restart avoids local minima

• Sequence finding is a hard search problem
— Finding loop blocking factors is much easier

• Spawned interest in academia & industry

1 trillion points
of interest

New techniques ⇒ new tools

Adaptive Inline Substitution
• Inline substitution is a well-known transformation

— Replace procedure call with body of called procedure
— Eliminates overhead & creates larger scope for optimization
— Important in OO languages, also improves C or FORTRAN

• Difficult problem is deciding which call sites to inline
— Decisions interact with each other
— Profitability depends heavily on context
— Underlying graph changes as decisions are made

• Current state of the art for the decision procedure
— A single heuristic applied at each call site in each application
— We have shown that program-specific inlining heuristics can produce

significantly better code than any general scheme

And, inlining can have
negative side effects

New techniques ⇒ new tools

Adaptive Inline Substitution
Inline substitution is a natural application for adaptive behavior

• Built a demonstration system for ANSI C programs
— Analyzes whole program and collects data on program properties

– Nesting depth, code size, constants at call, call frequency, etc.
– Experimented with 12 properties in Waterman’s thesis

— Apply tunable heuristic at each call site
– Compare actual values against parameter values
– Use search to select best parameter values

— Produce transformed source
— Compile, run, evaluate

— Improvements of 20% over static inliner
 and 30% over original (PowerPC & Pentium)

— Heuristics vary by application and by target architecture

numbers

Adaptive
Control

InlinerSource
Code Measurement

parameter
s

Compiler

New techniques ⇒ new tools

Adaptive Inline Substitution
Key design issues

• Finding a good way to parameterize the problem & the software
— Takes a “condition string” in CNF where each clause is a program

property and a constant, e.g.,

inliner -c “sc < 25 | lnd > 0, sc < 100” foo.c

— Search produces a condition string that can be used repeatedly

• Search space is huge
— Range of values depends on input program

– Estimate the range & discretize it into 20 intervals
— Condition string syntax admits too many choices
— Designed a single format for condition strings in our experiments

 sc < A | sc < B, lnd > 0 | sc < C, scc = 1 |
clc < D | cpc > E, sc < F | dcc > G

Fixes the search
space’s “shape”

New techniques ⇒ new tools

Page ‹#›

Adaptive Inline Substitution
Search spaces are much smoother than in sequence finding problem

• Designed search techniques for these spaces
—Impatient hill-climber and random restart

• And validated them experimentally

bzip, varying sc and sc
for single-call procedures

vortex, varying sc and
constants per call

New techniques ⇒ new tools

Adaptive Inline Substitution
How can we deploy these results?
• Source-to-source inliner

— Runs for a while and produces a CNF expression that describes a
program-specific heuristic

— Use the inliner on subsequent compilations with that heuristic
– If code properties change “enough”, re-run the search

• Tools
— We are implementing these ideas in Rose and in Phoenix
— For FORTRAN 90, we are looking for a front end (build one?)
— Expect to have (& distribute) working tools later this year

Fast
Inliner

Adaptive
InlinerSource

Code

heuristic

Standard
Compiler

Object
Code

once

each time

New techniques ⇒ new tools

Adaptive Optimization
Further work with adaptive inlining
• Robust implementations applied to large programs
• Experiment with other properties (obj. code size)

Apply knowledge & insight to other hard problems
• Expression refactoring

— Balance for ILP, depth for registers, affinity for folding & CSE
— Another extremely complex problem

• Register allocation
— Reformulate coalescing, recoloring, rematerialization, lr splitting
— Evaluate variants on same optimized code & interference graph

Key issues
— Developing expressive parameterizations
— Designing effective search strategies

Attack on
instruction
balance

Summary
• Better compiler techniques for microprocessor based systems

• Automatic application tuning through adaptive compilation

• Invent new code optimization techniques
— Improve runtime performance
— Broaden suite of codes that achieve “good” performance

• Transfer technology into important compilers
— Widely used open source systems & vendor compilers
— Model implementations to guide commercial
— Ph.D. students into industrial compiler groups

Page ‹#›

Students & Papers
Students

—Alex Grosul, Ph.D. (Search techniques for sequence finding) May 2005
—Todd Waterman, Ph.D. (Adaptive inline substitution), January 2006

Publications
— “ACME: Adaptive Compilation Made Easy”, ACM Conference on

Languages, Compilers, and Tools for Embedded Systems (LCTES), June
2005 (Cooper, Grosul, Harvey, Reeves, Subramanian, & Torczon)

— “Improved Passive Splitting”, Int’l Conference on Programming
Languages and Compilers, June 2005 (Cooper & Eckhardt)

— “Revisiting Graph-coloring Register Allocation: A Study of the Chaitin-
Briggs and Callahan-Koblenz Algorithms”, 18th International Workshop
on Languages and Compilers for Parallel Computing (LCPC), October
2005 (Cooper, Dasgupta, Eckhardt)

— “Adaptive Inlining”, in review
— Plus, two Ph.D. theses

