
Page ‹#›

Fault Tolerance,
Performance API,

and
MultiCore Optimization

Jack Dongarra
dongarra@cs.utk.edu

Innovative Computer Laboratory
University of Tennessee

http://lacsi.rice.edu/review/slides_2006
Participants:
Shirley Moore, Graham Fagg, George Bosilca, ICL Staff
Jeffery Chen, Jelena Pjesivac-Grbovic, Haihang You, Graduate Student

Outline
• Two parts with focus on tools and applications.
• Looking (near term and longer term) at:

—Open-MPI and using it in applications
—Parallel Tools effort with Eclipse / PAPI work
—MultiCore algorithms for future systems

• Focus on using enabling technology in
applications to demonstrate effectiveness and
usability in LANL applications.

Fault Tolerance: Motivation
• Trends in HPC:

—High end systems with thousand of
processors

—Move to multicore chips

• Increased probability of a node failure
—Most systems nowadays are robust

• MPI widely accepted in scientific computing
—Process faults not tolerated in MPI standard

Mismatch between hardware and (non fault-
tolerant) programming paradigm of MPI.

Minimum

Average

Maximum

1

10

100

1,000

10,000

100,000

1,000,000

Ju
n-9

3

Ju
n-9

4

Ju
n-9

5

Ju
n-9

6

Ju
n-9

7

Ju
n-9

8

Ju
n-9

9

Ju
n-0

0

Ju
n-0

1

Ju
n-0

2

Ju
n-0

3

Ju
n-0

4

Ju
n-0

5

#
 p

ro
c

e
s

s
o

rs

Top500 Data

Related Work

Manetho
n faults
[EZ92]

Egida

[RAV99]

MPI/FT
Redundance of tasks

[BNC01]

FT-MPI
Modification of MPI routines

User Fault Treatment

[FD00]

MPICH-V
N faults

Distributed logging

MPI-FT
N fault

Centralized server

[LNLE00]

Non AutomaticAutomatic

Pessimistic log

Log basedCheckpoint
based

Causal log
Optimistic log

(sender based)

Framework

API

Communication
Layer

Cocheck
Independent of MPI

[Ste96]

Starfish
Enrichment of MPI

[AF99]
Clip

Semi-transparent checkpoint

[CLP97]

Pruitt 98
2 faults sender based

[PRU98]

Sender based Mess. Log.
1 fault sender based

[JZ87]

Optimistic recovery
In distributed systems

n faults with coherent checkpoint
[SY85]

 A classification of fault tolerant message passing environments considering
 A) level in the software stack where fault tolerance is managed and
 B) fault tolerance techniques.

Causal logging +
Coordinated
checkpoint

LAM/MPI

MPICH-V/CL
LA-MPI

 New commun ity MPI effort OPEN-MPI
Jo in t w ith LANL, Ind iana U, U Tennessee,and INRIA

C^3
Compiler generated chkpt

[Pingali, SC04]

Page ‹#›

Open-MPI Approach for Dealing with
Faults

• Application checkpointing, MP API+Fault management,
automatic.

• Application ckpt: application store intermediate results and restart form them

• MP API+FM: message passing API returns errors to be handled by the programmer

• Automatic: runtime detects faults and handle recovery

• Checkpoint coordination: no, coordinated, uncoordinated.

• Coordinated: all processes are synchronized, network is flushed before ckpt;

• all processes rollback from the same snapshot

• Uncoordinated: each process checkpoint independently of the others
• each process is restarted independently of the other

• Message logging: no, pessimistic, optimistic, causal.

• Pessimistic: all messages are logged on reliable media and used for replay

• Optimistic: all messages are logged on non reliable media. If 1 node fails, replay is
 done according to other nodes logs. If >1 node fail, rollback to last

coherent checkpoint
• Causal: optimistic+Antecedence Graph, reduces the recovery time

Checkpoint/Restart

• Checkpoint/restart is today’s typical fault tolerance approach in HPC
—Periodically write process states into stable-storage
— If one process fails, abort all processes
—Good to tolerate the failure of the whole system
—But the overhead is high : T = # of procs * size_ckpt / bandwidth

• Today’s architectures are usually robust enough to survive partial failures without
suffering the failure of the whole system

—Can we tolerate partial failures with less overhead (and higher scalability) than
checkpoint/restart ?

 Comp Proc 1 … Comp Proc k

Process State
P1

Process State
Pk

Stable
Storage

Diskless Checkpointing
(J. S. Plank, et. el.)

 Comp Proc 1 Comp Proc k Ckpt Proc

Process State
P1

Local
Checkpoint

C1

Process State
Pk

Local
Checkpoint

Ck

Checkpoint
Encoding

C

• Each computational processor saves a copy of its state locally in memory
• Dedicate an additional processor to save the encoding of these states

• The checkpoint overhead is (binary tree encoding):

 T = log (# of procs) *size_ckpt / bandwidth + log (# of procs)*latency

XOR

Stable
Storage

!" # $!%&'(&)* +%$, -%&.%)/$'(&$" .%+01(234$)3/$5 %+(-%&6

7

78

788

7888

98 7:8 :;8 ;<8
= >* ?%&$('$" (* 1>4)42(3$! &(+%@@(&@

,
-
%
&
.
%
)
/
$
A
B
%
+
(
3
/
@
C T_ckpt

T_rcvr_data

T_rcvr_ftmpi

PCG: Performance

Run PCG for 5000 iterations and take checkpoint every 1000 iterations (about 5 minutes)
Simulate a failure of one node by exiting 4 processes at the 3000-th iteration.
Matrix size scales with the processors used, i.e. 60 procs: n=658,440; 480 procs: n=5.2M

146.1
77.2
42.1

24.8

System
Recovery

time

1697.0
1557.5
1490.5

1441.7

Total time to
recover from

fault

1531.1
1461.1
1429.3

1399.1

Time w/o
checkpoint

9.7
9.2
9.2

8.0

Checkpoint
time

10.1
10.0
9.9

9.8

Data
Recovery

time

Time (Sec)

480 procs
240 procs
120 procs

60 procs

IBM RS/6000 SP w/176
Winterhawk II thin nodes
(each with four 375 MHz
Power3-II processors)

PCG Performance Overhead for Checkpoint and Recovery

Number of Computation Processors

Page ‹#›

Coding to Survive Multiple Failures: Basic Scheme
(Reed-Solomon Encoding)

P1

P2

Pn

C1

Cm

 C1 = a11 * P1 + . . . + a1n * Pn

Cm = am1 * P1 + . . . + amn * Pn

If there are k (<= m) processes failed, then the m equalities become

m equations with k unknowns
By appropriately choosing A, the lost data can be recovered by solving the m equations.

The checkpoint overhead (assume pipelined encoding):

 T = m * { (1 + O(1/size_ckpt^0.5)) * size_ckpt / bandwidth + #of procs * latency }

Compute Procs Checkpoint Procs
Cm

Pj is the checkpoint data on the jth comp procs
Ci is the encoded data on the ith ckpt procs
A = (a i j)m x n is a encoding matrix

Key idea: establish m equalities by m encodings

.

.

.

RS

RS

{

PCG: Performance Overhead of Recovery

638.0 (12.0)

555.7 (8.2)

538.5 (5.7)

522.9 (3.7)

4 failures

637.1 (10.5)

554.2 (6.9)

537.5 (4.5)

521.7 (2.8)

1 failures

637.2 (11.1)

554.8 (7.4)

537.7 (4.9)

522.1 (3.2)

2 failures

637.7 (11.5)

555.2 (7.6)

538.1 (5.3)

522.8 (3.3)

3 failures 5 failures0 failuresT (ckpt T)

638.5 (12.5)622.9120 comp

556.1 (8.7)546.560 comp

538.6 (6.1)532.230 comp

523.1 (3.9)517.815 comp

Run PCG for 20000 iterations and take checkpoint every 2000 iterations
Simulate a failure by exiting some processes at the 10000-th iteration

! " # $! %&'(&) *+,%$- .%&/%*0$'(&$! %&'(&) *+1+2$3 %,(.%&4

56557

56857

96557

96857

:6557

:6857

98 ;5 <5 9:5

= >) ?%&$('$" () @>A*A1(+$! &(,%BB(&B

3
%
,
(
.
%
&
4
$
-
.
%
&
/
%
*
0
$
C
7
D

1 failed proc

2 failed proc

3 failed proc

4 failed proc

5 failed proc

PCG Performance Overhead for Checkpoint and Recovery

Number of Computation Processors

Second Approach
• Lossy approach for iterative methods

—Here there is only a checkpoint of the primary data
– Continuous checkpointing is not done during the

iteration.
—When the failure occurs we will approximate the

missing data and continue
– No guarantee here; may or may not work

Lossy Algorithm : Basic Idea

• Let us assume that the data for the system Ax=b is stored on
different processors by rows and original data, A and b, can be
retrieved.

A x b

=

=

Processor 2

Processor 3

Processor 4

Processor 5

Processor 6

Processor 1

Page ‹#›

Lossy Algorithm : Basic Idea

• Let us assume that the for the system Ax=b is stored on
different processors by row

A x b

=

=

Processor 2

Processor 3

Processor 4

Processor 5

Processor 6

Processor 1

» Processor 2 (e.g.) fails, all its data is lost.

» How to recover the lost part of x in this case?

Lossy Algorithm : Basic Idea

A x b

=

=

Processor 2

Processor 3

Processor 4

Processor 5

Processor 6

Processor 1

3 steps
» Step 1: recover a processor and a

running parallel environment (the job
of the FT-MPI library)

• Let us assume that the data for the system Ax=b is stored on
different processors by row

Lossy Algorithm : Basic Idea

A x b

=

=

Processor 2

Processor 3

Processor 4

Processor 5

Processor 6

Processor 1

3 steps
» Step 1: recover a processor and a

running parallel environment (the job
of the FT-MPI library)

» Step 2: recover A21 A22, …, An2 and b2
(the original data) on the failed
processor

• Let us assume that the data for the system Ax=b is stored on
different processors by row

Lossy Algorithm : Basic Idea

• Let us assume that the data for the system Ax=b is stored on
different processors by row

A x b

=

=

Processor 2

Processor 3

Processor 4

Processor 5

Processor 6

Processor 1

3 steps
» Step 1: recover a processor and a

running parallel environment (the job
of the FT-MPI library)

» Step 2: recover A21 A22, …, An2 and b2
(the original data) on the failed
processor

» Step 3: Notice that
» A21 x1 + A22 x2 + … + A2n xn = b2)
» x2 = A

22
-1 (b

2
 – ∑i≠2A2i xi

)

Page ‹#›

Using GMRES(30) Non Symmetric Matrix

3.910.331.035.381.5642.38372100lossy

0.200.321.021.682.401.9245.49395100chkptR

stomach; n=213,360; nnz=3,021,648; tol=10-10; #procs=16; nf=13,335; nnz=185,541

1.9241.04385nochkptR

38.89385nolossy

TIIITII,a,bTITRecovTRollTChkptTWall#iteriterfrecovery

Last checkpoint

Time are given in seconds
Intel Xeon at 2.40 GHz with
Myrinet interconnect

Extending PAPI Beyond the Processor
• PAPI is software layer that aims to provide the tool designer and

application engineer with a consistent interface and methodology
for use of the performance counter hardware found in most major
microprocessors.

• PAPI has historically targeted on on-processor performance
counters
—Ops, cycles, memory traffic,

• Several categories of off-processor counters exist
—network interfaces: Myrinet, Infiniband, GigE
—memory interfaces: Cray X1
—thermal and power interfaces: ACPI

– Anticipate processor problems

• CHALLENGE:
—Extend the PAPI interface to address multiple counter domains
—Preserve the PAPI calling sematics, ease of use, and platform

independence for existing applications

PAPI 3.0 Design

PAPI Low Level

Machine
Specific
Layer

Portable
Layer

PAPI Processor Dependent Substrate

PAPI High Level

Hardware Performance Counters
Operating System

Kernel Extension

Hardware Independent
Layer

PAPI 4.0 Multiple Substrate Design

PAPI Low Level

Machine
Specific
Layer

Portable
Layer

PAPI High Level

PAPI Processor Dependent
Substrate

Hardware Performance Counters

Operating System

Kernel
Extension

Hardware Independent Layer

PAPI Off-Processor Dependent
Substrate

Off-Processor Hardware Counters

Operating System

Kernel
Extension

Page ‹#›

PAPI 4.0
• Multi-substrate work complete
• Substrates available for

—ACPI (Advanced Configuration and Power Interface)
—Myrinet MX

• Substrates under development for
—Infiniband
—GigE

• Friendly User release available now for CVS checkout
• PAPI 4.0 Beta release expected Q2, 2006

Temperature Sensor
• AMD Opteron provides an on-die thermal diode with anode and

cathode brought out to processor pins.
• This diode can be read by an external temperature sensor to

determine the processors temperature.

Temperature Sensor
• AMD Opteron provides an on-die thermal diode with anode and

cathode brought out to processor pins.
• This diode can be read by an external temperature sensor to

determine the processors temperature.

Page ‹#›

LowerLower
VoltageVoltage

IncreaseIncrease
Clock RateClock Rate
& Transistor& Transistor

DensityDensity

We have seen increasing number of gates on a chip
and increasing clock speed.

Heat becoming an unmanageable problem, Intel
Processors > 100 Watts

We will not see the dramatic increases in clock

speeds in the future.

However, the number of gates on a chip will continue
to increase.

Intel Yonah will double the processing power on a per
watt basis. AMD, SUN, IBM, … have it.

Core

Cache

Core

Cache

Core

C1 C2

C3 C4

Cache

C1 C2

C3 C4

Cache

C1 C2

C3 C4

C1 C2

C3 C4

C1 C2

C3 C4

C1 C2

C3 C4

CPU Desktop Trends 2004-2010

2004 2005 2006 2007 2008 2009 2010

Cores Per Processor Chip

Hardware Threads Per Chip
0

50

100

150

200

250

300

Year

• Relative processing power will continue to double every 18 months
• 256 logical processors per chip in late 2010

Recursive/Fractal architectures
Recursive/Fractal data layout & Recursive algorithms

• Enable:
— Register blocking
— L1cache bocking
— L2 cache blocking
— Natural layout for parallel algorithm

• Close to the 2D block
cyclic distribution

• Proven efficient by experiments
on recursive algorithms and
recursive data layout
(see Gustavson et al.)

register

L2 cache

Shared memory

Distributed memory

L1 cache

Things to Watch:
Cell Processor - PlayStation 3

• The PlayStation 3's chip based on the "Cell“ processor (IBM, Sony, & Toshiba)
• Each Cell chip contains 9 processors – 1 PowerPC & 8 APUs.

— An APU is a self contained vector processor which acts independently from the
others.

— 4 floating point units capable of a total of 32 Gflop/s (8 Gflop/s each)

— 256 Gflop/s peak! 32 bit floating point; 64 bit floating point at 25 Gflop/s.
— IEEE format, but only rounds toward zero
— Datapaths “lite”

Page ‹#›

32 and 64 Bit Floating Point Arithmetic
• Use 32 bit floating point whenever possible and resort to 64 bit

floating point when needed to refine solution.
• Have done this for years with iterative refinement for dense

systems of linear equations.
Solve Ax = b in lower precision, keeping the factorization (L*U = A*P)
—Computer in higher precision r = b – A*x;

– Requires the original data A (stored in high precision)
—Solve Az = r; using the lower precision factorization;
—Update solution x+ = x + z using high precision
Iterate until converged.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision
O(n2) work is done in high precision
Doubles number of digits per iteration
Issue if the matrix is ill-conditioned.

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

Size of Problem

G
f
l
o
p
/
s

In Matlab Comparison of 32 and 64 Bit Computation for Ax=b

Another Look at Iterative Refinement
• On Cell processor, single precision is at 256 Gflop/s and double

precision is at 25 Gflop/s.

• On a Pentium; using SSE2, single precision can perform 4 floating point
operations per cycle and in double precision 2 floating point operations
per cycle.

• Reduced memory traffic

Double Precision

Single Precision w/iterative refinement

121.843200032

181.773200016

51.921600016

51.83240008

61.78160008

51.6480008

51.69160004

61.69120004

61.7880004

41.6640004

51.6580002

41.6660002

51.6040002

41.5220002

#stepsSpeedupn#procs

Cluster w/3.2 GHz Xeons

1.9 X speedup Matlab
on my laptop!

Acknowledgements
• Shirley Moore, Staff, ICL
• Graham Fagg,

Staff, ICL
• George Bosilca, Post Doc, ICL

• Interactions at LANL with:
—Open-MPI group at LANL

– FT-MPI and Open MPI effort
—Eclipse effort at LANL

– PAPI and Eclipse effort
—Performance group at LANL

– Multicore and performance work

• Jeffery Chen, Graduate Student
• Jelena Pjesivac-Grbovic,

Graduate Student
• Haihang You, Graduate Student

