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Outline
• Two parts with focus on tools and applications.
• Looking (near term and longer term) at:

—Open-MPI and using it in applications
—Parallel Tools effort with Eclipse / PAPI work
—MultiCore algorithms for future systems

• Focus on using enabling technology in
applications to demonstrate effectiveness and
usability in LANL applications.

Fault Tolerance: Motivation
• Trends in HPC:

—High end systems with thousand of
processors

—Move to multicore chips

• Increased probability of a node failure
—Most systems nowadays are robust

• MPI widely accepted in scientific computing
—Process faults not tolerated in MPI standard

Mismatch between hardware and (non fault-
tolerant) programming paradigm of MPI.
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Open-MPI Approach for Dealing with
Faults

• Application checkpointing, MP API+Fault management,
automatic.

• Application ckpt: application store intermediate results and restart form them

• MP API+FM: message passing API returns errors to be handled by the programmer

• Automatic: runtime detects faults and handle recovery

• Checkpoint coordination: no, coordinated, uncoordinated.

• Coordinated: all processes are synchronized, network is flushed before ckpt;

• all processes rollback from the same snapshot

• Uncoordinated: each process checkpoint independently of the others
• each process is restarted independently of the other

• Message logging: no, pessimistic, optimistic, causal.

• Pessimistic: all messages are logged on reliable media and used for replay

• Optimistic: all messages are logged on non reliable media. If 1 node fails, replay is
                  done according to other nodes logs. If >1 node fail, rollback to last

coherent checkpoint
• Causal: optimistic+Antecedence Graph, reduces the recovery time

Checkpoint/Restart

• Checkpoint/restart is today’s typical fault tolerance approach in HPC
—Periodically write process states into stable-storage
— If one process fails, abort all  processes
—Good to tolerate the failure of the whole system
—But the overhead is high :   T  =   # of procs * size_ckpt  /  bandwidth

• Today’s architectures are usually robust enough to survive partial failures without
suffering the failure of the whole system

—Can  we tolerate  partial failures with less overhead (and higher scalability) than
checkpoint/restart ?

      Comp Proc 1                              …                                         Comp Proc k

Process State
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(J. S. Plank, et. el.)
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• Each computational processor saves a copy of its state locally in memory
• Dedicate an additional processor to save the encoding of these states

• The checkpoint overhead is (binary tree encoding):

    T =  log ( # of procs ) *size_ckpt / bandwidth + log ( # of procs )*latency
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PCG: Performance

Run PCG for 5000 iterations and take checkpoint every 1000 iterations (about 5 minutes)
Simulate a failure of one node by exiting 4 processes at the 3000-th iteration.
Matrix size scales with the processors used, i.e. 60 procs: n=658,440; 480 procs: n=5.2M
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(each with four 375 MHz 
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PCG Performance Overhead for Checkpoint and Recovery

Number of Computation Processors
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Coding to Survive Multiple Failures: Basic Scheme
(Reed-Solomon Encoding)

P1

P2

Pn

C1

Cm

 C1 = a11 * P1 +  . . .  + a1n * Pn 

Cm = am1 * P1 +  . . .  + amn * Pn 

If there are k (<= m) processes failed, then the m equalities become

m equations with k unknowns
By appropriately choosing A, the lost data can be recovered by solving the m equations.

The checkpoint overhead (assume pipelined encoding):

  T = m * { ( 1 + O(1/size_ckpt^0.5) ) * size_ckpt / bandwidth + #of procs * latency }

Compute Procs  Checkpoint Procs
Cm

Pj is the checkpoint data on the jth comp procs
Ci is the encoded data on the ith ckpt  procs
A = ( a i j )m x n  is a encoding matrix

Key idea: establish m equalities by m encodings
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PCG: Performance Overhead of Recovery
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Run PCG for 20000 iterations and take checkpoint every 2000 iterations 
Simulate a failure by exiting some processes at the 10000-th iteration
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PCG Performance Overhead for Checkpoint and Recovery

Number of Computation Processors

Second Approach
• Lossy approach for iterative methods

—Here there is only a checkpoint of the primary data
– Continuous checkpointing is not done during the

iteration.
—When the failure occurs we will approximate the

missing data and continue
– No guarantee here; may or may not work

Lossy Algorithm : Basic Idea

• Let us assume that the data for the system Ax=b is stored on
different processors by rows and original data, A and b, can be
retrieved.

A x b

=

=

Processor 2

Processor 3

Processor 4

Processor 5

Processor 6

Processor 1
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Lossy Algorithm : Basic Idea

• Let us assume that the for the system Ax=b is stored on
different processors by row

A x b

=

=

Processor 2

Processor 3

Processor 4

Processor 5

Processor 6

Processor 1

» Processor 2 (e.g.) fails, all its data is lost.

» How to recover the lost part of x in this case?

Lossy Algorithm : Basic Idea

A x b

=

=

Processor 2

Processor 3

Processor 4

Processor 5

Processor 6

Processor 1

3 steps
» Step 1: recover a processor and a

running parallel environment (the job
of the FT-MPI library)

• Let us assume that the data for the system Ax=b is stored on
different processors by row

Lossy Algorithm : Basic Idea

A x b

=

=

Processor 2

Processor 3

Processor 4

Processor 5

Processor 6

Processor 1

3 steps
» Step 1: recover a processor and a

running parallel environment (the job
of the FT-MPI library)

» Step 2: recover A21 A22, …, An2 and b2
(the original data) on the failed
processor

• Let us assume that the data for the system Ax=b is stored on
different processors by row

Lossy Algorithm : Basic Idea

• Let us assume that the data for the system Ax=b is stored on
different processors by row

A x b

=

=

Processor 2

Processor 3

Processor 4

Processor 5

Processor 6

Processor 1

3 steps
» Step 1: recover a processor and a

running parallel environment (the job
of the FT-MPI library)

» Step 2: recover A21 A22, …, An2 and b2
(the original data) on the failed
processor

» Step 3: Notice that
» A21 x1 + A22 x2 + … + A2n xn = b2)
»  x2 = A

22
-1 (b

2
 – ∑i≠2A2i xi

)
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Using GMRES(30) Non Symmetric Matrix

3.910.331.035.381.5642.38372100lossy

0.200.321.021.682.401.9245.49395100chkptR

stomach; n=213,360; nnz=3,021,648; tol=10-10; #procs=16; nf=13,335; nnz=185,541

1.9241.04385nochkptR

38.89385nolossy

TIIITII,a,bTITRecovTRollTChkptTWall#iteriterfrecovery

Last checkpoint

Time are given in seconds
Intel Xeon at 2.40 GHz with
Myrinet interconnect

Extending PAPI Beyond the Processor
• PAPI is software layer that aims to provide the tool designer and

application engineer with a consistent interface and methodology
for use of the performance counter hardware found in most major
microprocessors.

• PAPI has historically targeted on on-processor performance
counters
—Ops, cycles, memory traffic,

• Several categories of off-processor counters exist
—network interfaces: Myrinet, Infiniband, GigE
—memory interfaces: Cray X1
—thermal and power interfaces: ACPI

– Anticipate processor problems

• CHALLENGE:
—Extend the PAPI interface to address multiple counter domains
—Preserve the PAPI calling sematics, ease of use, and platform

independence for existing applications

PAPI 3.0 Design

PAPI Low Level

Machine
Specific
Layer

Portable
Layer

PAPI Processor Dependent Substrate

PAPI High Level

Hardware Performance Counters
Operating System

Kernel Extension

Hardware Independent
Layer

PAPI 4.0 Multiple Substrate Design

PAPI Low Level

Machine
Specific
Layer

Portable
Layer

PAPI High Level

PAPI Processor Dependent
Substrate

Hardware Performance Counters

Operating System

Kernel
Extension

Hardware Independent Layer

PAPI Off-Processor Dependent
Substrate

Off-Processor Hardware Counters

Operating System

Kernel
Extension
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PAPI 4.0
• Multi-substrate work complete
• Substrates available for

—ACPI (Advanced Configuration and Power Interface )
—Myrinet MX

• Substrates under development for
—Infiniband
—GigE

• Friendly User release available now for CVS checkout
• PAPI 4.0 Beta release expected Q2, 2006

Temperature Sensor
• AMD Opteron provides an on-die thermal diode with anode and

cathode brought out to processor pins.
• This diode can be read by an external temperature sensor to

determine the processors temperature.

Temperature Sensor
• AMD Opteron provides an on-die thermal diode with anode and

cathode brought out to processor pins.
• This diode can be read by an external temperature sensor to

determine the processors temperature.
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LowerLower
VoltageVoltage

IncreaseIncrease
Clock RateClock Rate
& Transistor& Transistor

DensityDensity

We have seen increasing number of gates on a chip
and increasing clock speed.

Heat becoming an unmanageable problem, Intel
Processors > 100 Watts

We will not see the dramatic increases in clock

speeds in the future.

However, the number of gates on a chip will continue
to increase.

Intel Yonah will double the processing power on a per
watt basis. AMD, SUN, IBM, … have it.
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CPU Desktop Trends 2004-2010
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• Relative processing power will continue to double every 18 months
• 256 logical processors per chip in late 2010

Recursive/Fractal architectures
Recursive/Fractal data layout & Recursive algorithms

• Enable:
— Register blocking
— L1cache bocking
— L2 cache blocking
— Natural layout for parallel algorithm

• Close to the 2D block
cyclic distribution

• Proven efficient by experiments
on recursive algorithms and
recursive data layout
(see Gustavson et al.)

register

L2 cache

Shared memory

Distributed memory

L1 cache

Things to Watch:
Cell Processor - PlayStation 3

• The PlayStation 3's chip based on the "Cell“ processor (IBM, Sony, & Toshiba)
• Each Cell chip contains 9 processors – 1 PowerPC & 8 APUs.

— An APU is a self contained vector processor which acts independently from the
others.

— 4 floating point units capable of a total of 32 Gflop/s (8 Gflop/s each)

— 256 Gflop/s peak! 32 bit floating point; 64 bit floating point at 25 Gflop/s.
— IEEE format, but only rounds toward zero
— Datapaths “lite”
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32 and 64 Bit Floating Point Arithmetic
• Use 32 bit floating point whenever possible and resort to 64 bit

floating point when needed to refine solution.
• Have done this for years with iterative refinement for dense

systems of linear equations.
Solve Ax = b in lower precision, keeping the factorization (L*U = A*P)
—Computer in higher precision r = b – A*x;

– Requires the original data A (stored in high precision)
—Solve Az = r; using the lower precision factorization;
—Update solution x+ = x + z using high precision
Iterate until converged.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision
O(n2) work is done in high precision
Doubles number of digits per iteration
Issue if the matrix is ill-conditioned.
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In Matlab Comparison of 32 and 64 Bit Computation for Ax=b

Another Look at Iterative Refinement
• On Cell processor, single precision is at 256 Gflop/s and double

precision is at 25 Gflop/s.

• On a Pentium; using SSE2, single precision can perform 4 floating point
operations per cycle and in double precision 2 floating point operations
per cycle.

• Reduced memory traffic

Double Precision

Single Precision w/iterative refinement

121.843200032

181.773200016

51.921600016

51.83240008

61.78160008

51.6480008

51.69160004

61.69120004

61.7880004

41.6640004

51.6580002

41.6660002

51.6040002

41.5220002

#stepsSpeedupn#procs

Cluster w/3.2 GHz Xeons

1.9 X speedup Matlab 
on my laptop!
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