
Code-Based Sensitivities for
Verification and Validation

Adifor at LANL

Mike Fagan
Dept. of Computational and Applied Mathematics

Rice University

http://lacsi.rice.edu/review/slides_2006



What’s Coming Up
• Code-based Sensitivity Background
• Code-based Sensitivity for VnV
• Some Research Results
• Application to Truchas
• Near and Far Term Possibilities



Sensitivity Calculation Methods
• Finite Differences

—Development time is minimal +
—Choosing a perturbation (“h”) –
—Inaccurate and/or inefficient  –
—No reverse/adjoint mode –

• By Hand
—Can be accurate and efficient +

(depends on the programmer)
—Development time is long –
—Maintaining derivatives an additional burden –

Is there anything else ? …



What is Code-based Sensitivity?
• Combines the best of finite differences and by hand sensitivity

calculation
• Program generation tool

—Short development time

• Note on vocabulary: Automatic differentiation (AD) is synonymous
• Derivatives computed this way are

—Analytically accurate
—Always faster than central differences, frequently faster than 1-sided

differences

Compute
     f(x)

Compute
      f(x)
     AND
       f ‘ (x)

AD Tool



How does it work?
• Each assignment statement is augmented with derivatives
• Chain rule assures propagation is correct

Y = A * X ** 2 + B

P_A = 2 * X
P_X = A
P_B  = 1.0
CALL ACCUM(G_Y,P_A,G_A,P_X,G_X,1.0,G_B)

Y = A * X ** 2 + B



Verification and Validation



Validation and Verification using Code-
based Sensitivity

• Validation by inspection
• Validation by regression
• Method of Manufactured Solutions
• Running error bounds



Validation by inspection
• Informal, but valuable method used by

physicists/modelers/engineers everywhere
• Complex simulations have many parameters:

—Material properties / equations of state
—Geometry
—Boundary conditions

• Some of the simulation parameters are known with great
accuracy, some not

• Similarly, some of the parameters have a big effect on the output,
others not so much

• The effect of a given parameter = sensitivity of out w.r.t. parameter



Validation by inspection, cont.
• Physicists/modelers/engineers validate output by inspecting

values and sensitivities
—Output might be “off” because a highly sensitive parameter has not

been accurately measured
—Intuition about the sensitivities themselves aids validation process

• Code-based sensitivity computes analytic derivative values, so

Finite Differences



Validation by Regression
• More formal validation methodology

—Separate “real world” data into 2 partitions: “tuning” and “testing”
—*Optimize the parameter settings on the “tuning” data to  minimize

simulation vs “real world”
—Assuming the error in the tuned simulation is “small”
– Run the tuned simulation on the “testing” data set
– Check for “small” error

• Many variations on this methodology
—How to separate data
—How to determine “small”



Validation by Regression, cont.
• The tuning step of this validation method can use Newton’s

method to obtain optimal values
• Newton’s method runs best with analytic derivatives
• Code-based sensitivity supplies the derivatives



Method of Manufactured Solutions
(MMS)

• Way of verifying differential equation solvers
• Given a solver S, a differential operator D, and a forcing function F

—S(D,F) computes f s.t. D(f) = F (approximately)

• MMS
—“manufacture” an f
—compute D(f)(x) for several x, use this as the manufactured F
—Now check S(D,F) vs f. Can verify order of accuracy, etc.

• Use code-based sensitivity to compute D(f), for moderately
complex subroutines f



Running Error Bounds
• Wilkinson idea: estimate the roundoff error inherent in any

assignment statement
• Not exactly the same as derivatives, but similar source

augmentation
• Caveat: rules for intrinsics (like sin,cos) not so well known
• Caveat 2: roundoff error for sin,cos usu not as important as

truncation error

 z = a + b
                eb1 = a – (a+b) + b



Current Research Results



Code-based Sensitivity for Fortran 90
Programs

• Adifor works well on Fortran 77
• Fortran 90, however, has substantial language features

—Dynamic memory allocation
—Derived types (=structures)
—Pointers
—Operator and interface overloading
—Modules

• Adifor90 prototype works on Fortran 90 programs



Activity Analysis for Fortran 90
• Some variables in a computation may not need sensitivities

—Example: geometry might be constant

• Variables whose derivatives are provably 0 need not be computed
• Adifor activity analysis extended to Fortran 90



By Name/ By Address
• Program derivatives represented in 2 ways:

—By name:
Another variable holds the derivatives: x  g_x
augment calls with additional args: call f(x)  call g_f(x,g_x)

—By address:
All active variables (or components) have a derived type:
real  active real == { real v; real d }
procedures signatures are changed (but call sites not changed): sub
f(real x)  sub g_f(active_real x)

• By name is smoother for languages with derived types and array
slicing operations (F90)
   x(1:10)  g_x(1:10)      !! By name
   x(1:10)  x(1:10)%v     !! Attempt By address - Not valid !!



By Name / By Address, cont.
• By address is smoother for constant interface functions (like

mpi_reduce)
    call mpi_reduce(sendbuf,recvbuf,cnt,dtatype,op,root,comm,ierr)
       cannot add a g_sendbuf, etc

• Found a way to do by-address for F90 (also works for F77!)
• Also found a way to do by-name for C



Holomorphic Functions
• Rules of calculus the same, so complex valued functions are no

problem UNLESS
—Use abs, or real, imag

• Sometimes, programs written using non-holo primitives are still
holomorphic

• Found a way to preserve this
• Side benefit: you can computationally check the cauchy

conditions for your code



Adifor90 on Truchas
• During the week of 23 Jan, I installed Adifor90 prototype on CCS-2

machine, and have begun differentiating Truchas system
• Truchas is a metal casting code (and MORE – Jim Sicilian)



Truchas Properties
• 267 files (not including some package components)
• 2542 functions/subroutines
• 104629 lines of code = 70500 non comments (approx)
• Uses derived types, memory allocation, pointers, overloading via

interface blocks, modules, and local subprograms
• Does NOT use equivalence or common blocks



Truchas Checkout
• 25 routines checked out (more by time I give this talk)
• Sample results from an elliptic integral routine

elk(0.5)     = 1.854074677301372
fd (0.001)  = 0.8481413948864258

ad              = 0.8472143556167433



Near Term
• Finish all of Truchas in black-box mode by end of 2006 contract

—Differentiate pgslib (semi-auto)

• Investigate how to avoid solver differentiation in Truchas
• Generalize both of these tasks (upgrade to full auto)
• Continue to improve the storage efficiency of reverse mode



Future Possibilities
• Differentiation of other languages of interest

—Ajax system
– FLAG code

—C / C++
—Python
—Machine code (ie source unavailable)

• Differentiate Stochastic simulations
—Stochastic calculi
—If statements get different treatment

• Other sensitivity
—Intervals
—Probability distributions



Future Possibilities, cont.
• Improve performance by enabling actual Newton methods

F(x + t*v) – F(x) / t ! Directional derivatives

Replace with

G_F(x,v)


