Code-Based Sensitivities for
Verification and Validation

Adifor at LANL

Mike Fagan
Dept. of Computational and Applied Mathematics
Rice University

http://lacsi.rice.edu/review/slides_2006

LACSIar

What’s Coming Up

Code-based Sensitivity Background
Code-based Sensitivity for VnV
Some Research Results
Application to Truchas

Near and Far Term Possibilities

LACSIar

Sensitivity Calculation Methods

* Finite Differences
—Development time is minimal +
—Choosing a perturbation (“h”) —
—Inaccurate and/or inefficient —
—No reverse/adjoint mode —

* By Hand

—Can be accurate and efficient +
(depends on the programmer)

—Development time is long —
—NMaintaining derivatives an additional burden —

Is there anything else ? ...

LACSIar

What is Code-based Sensitivity?

* Combines the best of finite differences and by hand sensitivity
calculation

* Program generation tool
—Short development time

* Note on vocabulary: Automatic differentiation (AD) is synonymous

* Derivatives computed this way are
—Analytically accurate

—Always faster than central differences, frequently faster than 1-sided
differences

Compute Con’fl(p I;te
X
) AND
£ (x)

LACSIar

How does it work?

* Each assighment statement is augmented with derivatives

* Chain rule assures propagation is correct

Y=A*X**2+B

¢

PA=2%X
PX=A

PB =1.0

CALL ACCUM(G Y,P A.G AP X,G X,1.0,G B)

Y=A*X**2+B

LACSIar

Verification and Validation

LACSIar

Validation and Verification using Code-
based Sensitivity

Validation by inspection
Validation by regression
Method of Manufactured Solutions

Running error bounds

LACSIar

Validation by inspection

* Informal, but valuable method used by
physicists/modelers/engineers everywhere
* Complex simulations have many parameters:
—NMaterial properties / equations of state
—Geometry
—Boundary conditions

* Some of the simulation parameters are known with great
accuracy, some not

* Similarly, some of the parameters have a big effect on the output,
others not so much

* The effect of a given parameter = sensitivity of out w.r.t. parameter

LACSIar

Validation by inspection, cont.

* Physicists/modelers/engineers validate output by inspecting
values and sensitivities

—Output might be “off” because a highly sensitive parameter has not
been accurately measured

—Intuition about the sensitivities themselves aids validation process

* Code-based sensitivity computes analytic derivative values, so

Finite

LACSIar

Validation by Regression

More formal validation methodology
—Separate “real world” data into 2 partitions: “tuning” and “testing”

—*Optimize the parameter settings on the “tuning” data to minimize
simulation vs “real world”

—Assuming the error in the tuned simulation is “small”
— Run the tuned simulation on the “testing” data set
— Check for “small” error

Many variations on this methodology
—How to separate data
—How to determine “small”

LACSIar

Validation by Regression, cont.

The tuning step of this validation method can use Newton’s
method to obtain optimal values

Newton’s method runs best with analytic derivatives

Code-based sensitivity supplies the derivatives

LACSIar

Method of Manufactured Solutions
(MMS)

* Way of verifying differential equation solvers

* Given a solver S, a differential operator D, and a forcing function F
—$(D,F) computes f s.t. D(f) = F (approximately)

* MMS
—“manufacture” an f

—compute D(f)(x) for several x, use this as the manufactured F
—Now check S(D,F) vs f. Can verify order of accuracy, etc.

* Use code-based sensitivity to compute D(f), for moderately
complex subroutines f

LACSIar

Running Error Bounds

Wilkinson idea: estimate the roundoff error inherent in any
assignhment statement

Not exactly the same as derivatives, but similar source
augmentation

Caveat: rules for intrinsics (like sin,cos) not so well known

Caveat 2: roundoff error for sin,cos usu not as important as
truncation error

z=a+b
ebl =a—(atb)+b

LACSIar

Current Research Results

LACSIar

Code-based Sensitivity for Fortran 90
Programs

e Adifor works well on Fortran 77

* Fortran 90, however, has substantial language features
—Dynamic memory allocation
—Derived types (=structures)
—Pointers
—Operator and interface overloading
—Modules

* Adifor90 prototype works on Fortran 90 programs

LACSIar

Activity Analysis for Fortran 90

* Some variables in a computation may not need sensitivities
—Example: geometry might be constant

* Variables whose derivatives are provably 0 need not be computed

* Adifor activity analysis extended to Fortran 90

LACSIar

By Name/ By Address

* Program derivatives represented in 2 ways:

—By name:
Another variable holds the derivatives: x 2> g_x
augment calls with additional args: call f(x) = call g_f(x,g_Xx)

—By address:
All active variables (or components) have a derived type:
real = active real == {real v; real d }
procedures signatures are changed (but call sites not changed): sub
f(real x) 2 sub g_f(active_real x)

* By name is smoother for languages with derived types and array
slicing operations (F90)
x(1:10) = g_x(1:10) !! By name
x(1:10) = x(1:10)%v !! Attempt By address - Not valid !!

LACSIar

By Name / By Address, cont.

* By address is smoother for constant interface functions (like
mpi_reduce)
call mpi_reduce(sendbuf,recvbuf,cnt,dtatype,op,root,comm,ierr)
cannot add a g_sendbuf, etc

* Found a way to do by-address for F90 (also works for F77!)

* Also found a way to do by-name for C

LACSIar

Holomorphic Functions

Rules of calculus the same, so complex valued functions are no
problem UNLESS

—Use abs, or real, imag

Sometimes, programs written using non-holo primitives are still
holomorphic

Found a way to preserve this

Side benefit: you can computationally check the cauchy
conditions for your code

LACSIar

Adifor90 on Truchas

* During the week of 23 Jan, | installed Adifor90 prototype on CCS-2
machine, and have begun differentiating Truchas system

* Truchas is a metal casting code (and MORE - Jim Sicilian)

LACSIar

Truchas Properties

267 files (not including some package components)
2542 functions/subroutines
104629 lines of code = 70500 non comments (approx)

Uses derived types, memory allocation, pointers, overloading via
interface blocks, modules, and local subprograms

Does NOT use equivalence or common blocks

LACSIar

Truchas Checkout

* 25 routines checked out (more by time | give this talk)

* Sample results from an elliptic integral routine
elk(0.5) =1.854074677301372
fd (0.001) = 0.8481413948864258

ad = 0.8472143556167433

LACSIar

Near Term

Finish all of Truchas in black-box mode by end of 2006 contract
—Differentiate pgslib (semi-auto)

Investigate how to avoid solver differentiation in Truchas
Generalize both of these tasks (upgrade to full auto)

Continue to improve the storage efficiency of reverse mode

LACSIar

Future Possibilities

* Differentiation of other languages of interest
—Ajax system
— FLAG code
—C /| C++
—Python
—Machine code (ie source unavailable)

* Differentiate Stochastic simulations
—Stochastic calculi
—If statements get different treatment

* Other sensitivity
—Intervals
—Probability distributions

LACSIar

Future Possibilities, cont.

* Improve performance by enabling actual Newton methods

F(x + t*v) — F(x) / t | Directional derivatives
Replace with

G F(x,v)

LACSIar

