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What’s Coming Up

Code-based Sensitivity Background
Code-based Sensitivity for VnV
Some Research Results
Application to Truchas

Near and Far Term Possibilities
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Sensitivity Calculation Methods

* Finite Differences
—Development time is minimal +
—Choosing a perturbation (“h”) —
—Inaccurate and/or inefficient —
—No reverse/adjoint mode —

* By Hand

—Can be accurate and efficient +
(depends on the programmer)

—Development time is long —
—NMaintaining derivatives an additional burden —

Is there anything else ? ...
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What is Code-based Sensitivity?

* Combines the best of finite differences and by hand sensitivity
calculation

* Program generation tool
—Short development time

* Note on vocabulary: Automatic differentiation (AD) is synonymous

* Derivatives computed this way are
—Analytically accurate

—Always faster than central differences, frequently faster than 1-sided
differences

Compute Con’fl(p I;te
X
) AND
£ (x)
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How does it work?

* Each assighment statement is augmented with derivatives

* Chain rule assures propagation is correct

Y=A*X**2+B

¢

PA=2%X
PX=A

PB =1.0

CALL ACCUM(G Y,P A.G AP X,G X,1.0,G B)

Y=A*X**2+B
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Verification and Validation
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Validation and Verification using Code-
based Sensitivity

Validation by inspection
Validation by regression
Method of Manufactured Solutions

Running error bounds
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Validation by inspection

* Informal, but valuable method used by
physicists/modelers/engineers everywhere
* Complex simulations have many parameters:
—NMaterial properties / equations of state
—Geometry
—Boundary conditions

* Some of the simulation parameters are known with great
accuracy, some not

* Similarly, some of the parameters have a big effect on the output,
others not so much

* The effect of a given parameter = sensitivity of out w.r.t. parameter
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Validation by inspection, cont.

* Physicists/modelers/engineers validate output by inspecting
values and sensitivities

—Output might be “off” because a highly sensitive parameter has not
been accurately measured

—Intuition about the sensitivities themselves aids validation process

* Code-based sensitivity computes analytic derivative values, so

Finite
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Validation by Regression

More formal validation methodology
—Separate “real world” data into 2 partitions: “tuning” and “testing”

—*Optimize the parameter settings on the “tuning” data to minimize
simulation vs “real world”

—Assuming the error in the tuned simulation is “small”
— Run the tuned simulation on the “testing” data set
— Check for “small” error

Many variations on this methodology
—How to separate data
—How to determine “small”
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Validation by Regression, cont.

The tuning step of this validation method can use Newton’s
method to obtain optimal values

Newton’s method runs best with analytic derivatives

Code-based sensitivity supplies the derivatives
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Method of Manufactured Solutions
(MMS)

* Way of verifying differential equation solvers

* Given a solver S, a differential operator D, and a forcing function F
—$(D,F) computes f s.t. D(f) = F (approximately)

* MMS
—“manufacture” an f

—compute D(f)(x) for several x, use this as the manufactured F
—Now check S(D,F) vs f. Can verify order of accuracy, etc.

* Use code-based sensitivity to compute D(f), for moderately
complex subroutines f
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Running Error Bounds

Wilkinson idea: estimate the roundoff error inherent in any
assignhment statement

Not exactly the same as derivatives, but similar source
augmentation

Caveat: rules for intrinsics (like sin,cos) not so well known

Caveat 2: roundoff error for sin,cos usu not as important as
truncation error

z=a+b
ebl =a—(atb)+b
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Current Research Results
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Code-based Sensitivity for Fortran 90
Programs

e Adifor works well on Fortran 77

* Fortran 90, however, has substantial language features
—Dynamic memory allocation
—Derived types (=structures)
—Pointers
—Operator and interface overloading
—Modules

* Adifor90 prototype works on Fortran 90 programs
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Activity Analysis for Fortran 90

* Some variables in a computation may not need sensitivities
—Example: geometry might be constant

* Variables whose derivatives are provably 0 need not be computed

* Adifor activity analysis extended to Fortran 90
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By Name/ By Address

* Program derivatives represented in 2 ways:

—By name:
Another variable holds the derivatives: x 2> g_x
augment calls with additional args: call f(x) = call g_f(x,g_Xx)

—By address:
All active variables (or components) have a derived type:
real = active real == {real v; real d }
procedures signatures are changed (but call sites not changed): sub
f(real x) 2 sub g_f(active_real x)

* By name is smoother for languages with derived types and array
slicing operations (F90)
x(1:10) = g_x(1:10) !! By name
x(1:10) = x(1:10)%v !! Attempt By address - Not valid !!
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By Name / By Address, cont.

* By address is smoother for constant interface functions (like
mpi_reduce)
call mpi_reduce(sendbuf,recvbuf,cnt,dtatype,op,root,comm,ierr)
cannot add a g_sendbuf, etc

* Found a way to do by-address for F90 (also works for F77!)

* Also found a way to do by-name for C
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Holomorphic Functions

Rules of calculus the same, so complex valued functions are no
problem UNLESS

—Use abs, or real, imag

Sometimes, programs written using non-holo primitives are still
holomorphic

Found a way to preserve this

Side benefit: you can computationally check the cauchy
conditions for your code
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Adifor90 on Truchas

* During the week of 23 Jan, | installed Adifor90 prototype on CCS-2
machine, and have begun differentiating Truchas system

* Truchas is a metal casting code (and MORE - Jim Sicilian)
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Truchas Properties

267 files (not including some package components)
2542 functions/subroutines
104629 lines of code = 70500 non comments (approx)

Uses derived types, memory allocation, pointers, overloading via
interface blocks, modules, and local subprograms

Does NOT use equivalence or common blocks
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Truchas Checkout

* 25 routines checked out (more by time | give this talk)

* Sample results from an elliptic integral routine
elk(0.5) =1.854074677301372
fd (0.001) = 0.8481413948864258

ad = 0.8472143556167433
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Near Term

Finish all of Truchas in black-box mode by end of 2006 contract
—Differentiate pgslib (semi-auto)

Investigate how to avoid solver differentiation in Truchas
Generalize both of these tasks (upgrade to full auto)

Continue to improve the storage efficiency of reverse mode
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Future Possibilities

* Differentiation of other languages of interest
—Ajax system
— FLAG code
—C /| C++
—Python
—Machine code (ie source unavailable)

* Differentiate Stochastic simulations
—Stochastic calculi
—If statements get different treatment

* Other sensitivity
—Intervals
—Probability distributions
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Future Possibilities, cont.

* Improve performance by enabling actual Newton methods

F(x + t*v) — F(x) / t | Directional derivatives
Replace with

G F(x,v)
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