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Outline
• Component Integration Systems

—Support for the maintenance and optimization of component libraries
—High-productivity languages

• Retargetable High Performance Components
—Automatic tuning of components for specific computing platforms
—Design of adaptive components

• Application Drivers from LANL Weapons Program
—Marmot, Telluride, Ajax programming system (FLAG)

• Previous Projects, Renewed Relevance
—High-level Java optimization
—Program Preparation for Heterogenous Computing Environments (e.g.,

Grids)

Some Previous Accomplishments
• JaMake Java Framework

—Collaboration with CartaBlanca Project
—Performs object inlining on arrays of objects

– Overcomes the cost of using full OO polymorphism
– Achieved 80% improvement on the LANL Parsek code
– Critical to CartaBlanca R&D 100 Award

—Results apply to C++ and Python (and Ajax?)
—Attracted NSF funding, published 7 refereed papers

• Grid Research
—Drove performance prediction research
—Effective performance-model based scheduling
—VGrADS: NSF ITR (Large)
—Ideas for Grid in a box

– Many future supercomputers will have heterogeneous computing
components: good scheduling will be critical for performance

Component Integration
• Supporting Technologies for Component Integration

—Transformation systems to eliminate overheads due to abstraction
—Component integration systems to automate specialization

– Key problem: integration of data structure components with
functional components

• Continue Collaborations with LANL Code Projects
—Marmot

– Pursue directions in the draft collaboration plan (later)
– Application of object-oriented optimization strategies (from

JaMake, applied to C++ via ROSE infrastructure)
—New LANL Contact from X Division

– Hank Alme

• Challenge Applications
—Export-restricted codes including hydro and transport
—Representative of ASC code styles
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Participants
• LANL Contacts

—Staff: Hank Alme, Craig Rasmussen

• Rice
—Faculty/Staff: Ken Kennedy, Bradley Broom*, Zoran Budimlic, Keith

Cooper, Arun Chauhan*, Rob Fowler, Guohua Jin, Tim Harvey,
Chuck Koelbel, John Mellor-Crummey, Steve Reeves, Linda
Torczon

—Students: Raj Bandyopadhyay, Jason Eckhardt, Mary Fletcher, Alex
Grosul, Mack Joyner, Cheryl McCosh, Apan Qasem, Todd
Waterman, Anna Youssefi, Rui Zhang, Yuan Zhao

• Tennessee
—Faculty/Staff: Jack Dongarra, Shirley Moore, Graham Fagg, George

Bosilca
—Students: Haihang You, Jelena Pjesivac-Grbovic, and Jeffery Chen
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Telescoping Language Advantages
• Optimized script compilation times can be reasonable

—Investment in library analysis speeds script optimization

• High-level optimizations possible
—Exploit library designer’s knowledge of routine properties
—Specialize library routines during optimizer generation to exploit

expected calling sequences
– Apply high-level transformations based on identities
– Factor and/or fuse library primitives as appropriate

• User retains substantive control over performance
—Mature code can be built into a library, annotated with properties to aid

optimization and fed to library compiler

• Reliability can be improved
—No hand coding to context

Component Integration System
• Component integration systems are important productivity tools
• Programs constructed from them can be slow

—No context-based code improvements can be applied
—Component crossing overheads are high

– Result: heavyweight components, insufficient separation of
concerns

• Claim: Telescoping languages can address this problem
—Can be applied to construct component integration systems that yield

high-performance applications
—Can make components usable in contexts that have been previously

considered impractical

• ASC Relevance
—Component-based software is critical for productivity and reliability
—Performance must be high for software to be usable
—Useful to prototype in high-productivity language (Python, Matlab)
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Component Integration Challenge
• Integration of different component libraries that

—Implement data structures (e.g., sparse matrices)
—Implement functions on data structures (e.g., linear algebra)

• Problem: Performance
—High function overhead for data structure access (frequently invoked)
—Need optimization for special contexts

– e.g., invocation in loops

• Claim: Telescoping languages can handle this well
—Advance generation of specialized entries
—Transformation pass to perform substitution

What We Have Done
• Developed base-language compiler technology

—Type inference: Key to generation of C or Fortran from Matlab, S, or
Python
– Useful even if C++ or Fortran is your scripting language

• Conducted preliminary studies
—Matlab SP (Signal Processing), LibGen (library generation)

– Six papers, one Ph.D., two Master’s
—R compilation (funded separately by DOD)

• Demonstrated benefits of telescoping languages as component
integration system (via LibGen)

• Developed strategy for generalized data structures
—Including addition of parallelism to scripting languages (funded by ST-

HEC program from NSF/DARPA)
• Met with Marmot team to explore collaboration opportunities
• Begun examination of applicability to codes written using Ajax

Programming System (e.g., FLAG)

Library Generator (LibGen)
• ARPACK

—Prof Dan Sorensen (Rice CAAM) maintains ARPACK, a large-scale
eigenvalue solver

• Methodology
—He prototypes the algorithms in Matlab, then generates 8 variants in

Fortran by hand:
– {Real, Complex} x {Symmetric, Nonsymmetric} x {Single,Double}
– Dense vs Sparse handled by special interface

• Could this hand generation step be eliminated?
—Answer: YES
—Key technology: Constraint-based type inference

– Polynomial time algorithm to compute type jump functions
  Map input types to variable types

LibGen Performance
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Parallelism in Scripting Languages
• Tennessee Approach

—Global arrays resident on parallel ScaLAPACK server
– Operations executed local to data

—Accessible from Matlab, Python, Mathematica clients
– R should be an easy extension

—Working now

• Rice Approach
—Support for multiple distributions

– Standard plus user-defined
—Compilation to Fortran 90 + MPI

– Runs on back end server
—Telescoping languages + HPF technology for specialization

– Specialize each operation for each distribution
– Specialize communication for each distribution pair

—Funded by NSF ST-HEC (DARPA HPCS)

Rice Parallel Matlab

No expensive
HPF compile

Performance: 2D Stencil

512 x 512
(BLOCK,BLOCK) 

Single-node compilation
improvement

Parallel Efficiency: 2D Stencil

512 x 512
(BLOCK,BLOCK) 

Single-node compilation
improvement
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LACSI Interactions
• Priorities and Strategies Meetings

—Inputs from Steven Lee and Ken Koch led to direction change

• Attended Workshops
—Common Component Architecture, LACSI Symposium 2002
—Initial Components Workshop (April 16-17, 2003)

• Discussions with Marmot Group
—Monterrey Methods Workshop (March 16-18, 2004)
—Components Workshop at LANL (June 24, 2004)

– Developed an outline plan for collaboration
—Additional meetings during LACSI visit Oct 31-Nov 3, 2005

• Meetings with Code Performance Team (Alme)
—October-November 2005 visit, December 2005

– Leading to focus on Ajax (Scott Runnels)

What We Plan to Do
• Seek (and solve) component integration challenge problem

—Emphasis on efficiency of frequent component-crossing
– Integration of data structure and function

• Explore opportunities in other ASC codes
—Initiating new project to explore improvements in Ajax programming

system (on FLAG)
– Telescoping languages and object-oriented optimizations

• Continue interactions with Marmot Project
—Goal: build tools to help them on their second or third iteration

• Explore application of parallel Matlab and R to V&V codes from
D1 (Dave Higdon)

• Relevance to ASC
—Success will make it easier to use modern component-based

software development strategies in ASC codes
– Without sacrificing performance

Specific Topics
• Specialization Strategies

—Specialized handling of multiple materials in cells
—Compiler-based specialization to sparse data structures
—Combined telescoping languages and dynamic code selection

– Optimization by limited computation reorganization

• Improved Translation within Ajax
• Tools for Preoptimization of Libraries

—Pre-specialization of library codes to expected calling contexts
—Potential source of components: Trillinos

• Mining of Traditional Applications
—Construction of libraries for inclusion in domain languages

• Rapid Prototyping Support
—Compilation of scripting languages (Python, Matlab) to Fortran/C

Automatic Component Tuning
• Participants: Four Groups within LACSI

—Tennessee: Jack Dongarra
– Collaboration with LLNL ROSE Group (Dan Quinlan, Qing Yi)

—Rice: Ken Kennedy and John Mellor Crummey
– Students Apan Qasem and Yuan Zhao
– Also collaborating with ROSE Group

—Rice: Keith Cooper, Devika Subramanian, and Linda Torczon
– Students Todd Waterman and Alex Grosul
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Automatic Component Tuning
• Goal: Pretune components for high performance on different

computing platforms (in advance)
—Models: ATLAS, FFTW, UHFFT
—Generate tuned versions automatically

• Strategy: View as giant optimization problem with code running
time as objective function
—For each critical loop nest:

– Parameterize the search space
– Prune using compiler models based on static analysis
– Employ heuristic search to find optimal point and generate

optimal code version
—Typical optimizations:

– Loop blocking, unroll, unroll-and-jam, loop fusion, storage
reduction, optimization of target compiler settings, inlining,
optimization of function decomposition

New Autotuning Work
• Combination of three optimizations (student: Apan Qasem)

—Cache tiling, register blocking, and loop fusion (new)

• Loop fusion
—Critical for performance, particularly on Fortran 90 codes

– Array assignments are “scalarized” in multiple dimensions
– Fusion can dramatically enhance memory performance

—Problems:
– too much fusion can lead to conflict misses
– fusion and tiling interactions can degrade performance

—Strategy:
– Strategy: construct combined model that predicts “effective cache

size” (fewer than 2.5% conflict misses) then fuse and tune to that
size

– Advantage: many fewer evaluations, basically same performance

Automatic Tuning
• Successes

—Experimental infrastructure
– LoopTool, MSCP, ATLAS2, CODELAB

—Large-scale experiments
—Principles demonstrated

– Effectiveness of heuristic search (including parallel search)
– Importance of search-space pruning using compiler models

—Papers published
– Ten refereed publications and one technical report (see web site)

—Established an Autotuning Community
– LACSI Workshop 2005

• Relevance
—Dramatically increases productivity of scientific programming

• Connections to ASC
—Sweep3D (1.3x on Alpha), ASC performance group, Marmot, Truchas

Summary
• Component integration languages and frameworks

—High Level: Matlab, S, Python plus component libraries
—Low Level: C, C++, Fortran

• Compilation technology
—Type inferencing to drive translation to C or Fortran
—Telescoping languages to pre-optimize libraries
—Parallelism in scripting languages

– Parallelism based on distribution
• Component Autotuning

—Goal: ATLAS-style automatic tuning for generalized applications,
UHFFT-style automatic tuning for decomposable (library) components

—Exploring heuristic search and static search-space pruning
• Technology Transfer

—Focus component integration on problems arising from ASC code
projects

—Automatic tuning applicable to general languages


