
Page ‹#›

Component Integration and
Optimization

For High Productivity and Performance

Ken Kennedy
Rice University

http://lacsi.rice.edu/review/slides_2006/

Outline
• Component Integration Systems

—Support for the maintenance and optimization of component libraries
—High-productivity languages

• Retargetable High Performance Components
—Automatic tuning of components for specific computing platforms
—Design of adaptive components

• Application Drivers from LANL Weapons Program
—Marmot, Telluride, Ajax programming system (FLAG)

• Previous Projects, Renewed Relevance
—High-level Java optimization
—Program Preparation for Heterogenous Computing Environments (e.g.,

Grids)

Some Previous Accomplishments
• JaMake Java Framework

—Collaboration with CartaBlanca Project
—Performs object inlining on arrays of objects

– Overcomes the cost of using full OO polymorphism
– Achieved 80% improvement on the LANL Parsek code
– Critical to CartaBlanca R&D 100 Award

—Results apply to C++ and Python (and Ajax?)
—Attracted NSF funding, published 7 refereed papers

• Grid Research
—Drove performance prediction research
—Effective performance-model based scheduling
—VGrADS: NSF ITR (Large)
—Ideas for Grid in a box

– Many future supercomputers will have heterogeneous computing
components: good scheduling will be critical for performance

Component Integration
• Supporting Technologies for Component Integration

—Transformation systems to eliminate overheads due to abstraction
—Component integration systems to automate specialization

– Key problem: integration of data structure components with
functional components

• Continue Collaborations with LANL Code Projects
—Marmot

– Pursue directions in the draft collaboration plan (later)
– Application of object-oriented optimization strategies (from

JaMake, applied to C++ via ROSE infrastructure)
—New LANL Contact from X Division

– Hank Alme

• Challenge Applications
—Export-restricted codes including hydro and transport
—Representative of ASC code styles

Page ‹#›

Participants
• LANL Contacts

—Staff: Hank Alme, Craig Rasmussen

• Rice
—Faculty/Staff: Ken Kennedy, Bradley Broom*, Zoran Budimlic, Keith

Cooper, Arun Chauhan*, Rob Fowler, Guohua Jin, Tim Harvey,
Chuck Koelbel, John Mellor-Crummey, Steve Reeves, Linda
Torczon

—Students: Raj Bandyopadhyay, Jason Eckhardt, Mary Fletcher, Alex
Grosul, Mack Joyner, Cheryl McCosh, Apan Qasem, Todd
Waterman, Anna Youssefi, Rui Zhang, Yuan Zhao

• Tennessee
—Faculty/Staff: Jack Dongarra, Shirley Moore, Graham Fagg, George

Bosilca
—Students: Haihang You, Jelena Pjesivac-Grbovic, and Jeffery Chen

Component
Library

Application Application
Translator

Optimized
Application

Vendor
Compiler

Optimizer
Generator

Could run for hours

Application
Optimizer

Understands
library calls
as primitives

Telescoping Languages

Scripting language or
standard language,
(Fortran or C++)

Telescoping Language Advantages
• Optimized script compilation times can be reasonable

—Investment in library analysis speeds script optimization

• High-level optimizations possible
—Exploit library designer’s knowledge of routine properties
—Specialize library routines during optimizer generation to exploit

expected calling sequences
– Apply high-level transformations based on identities
– Factor and/or fuse library primitives as appropriate

• User retains substantive control over performance
—Mature code can be built into a library, annotated with properties to aid

optimization and fed to library compiler

• Reliability can be improved
—No hand coding to context

Component Integration System
• Component integration systems are important productivity tools
• Programs constructed from them can be slow

—No context-based code improvements can be applied
—Component crossing overheads are high

– Result: heavyweight components, insufficient separation of
concerns

• Claim: Telescoping languages can address this problem
—Can be applied to construct component integration systems that yield

high-performance applications
—Can make components usable in contexts that have been previously

considered impractical

• ASC Relevance
—Component-based software is critical for productivity and reliability
—Performance must be high for software to be usable
—Useful to prototype in high-productivity language (Python, Matlab)

Page ‹#›

Component Integration Challenge
• Integration of different component libraries that

—Implement data structures (e.g., sparse matrices)
—Implement functions on data structures (e.g., linear algebra)

• Problem: Performance
—High function overhead for data structure access (frequently invoked)
—Need optimization for special contexts

– e.g., invocation in loops

• Claim: Telescoping languages can handle this well
—Advance generation of specialized entries
—Transformation pass to perform substitution

What We Have Done
• Developed base-language compiler technology

—Type inference: Key to generation of C or Fortran from Matlab, S, or
Python
– Useful even if C++ or Fortran is your scripting language

• Conducted preliminary studies
—Matlab SP (Signal Processing), LibGen (library generation)

– Six papers, one Ph.D., two Master’s
—R compilation (funded separately by DOD)

• Demonstrated benefits of telescoping languages as component
integration system (via LibGen)

• Developed strategy for generalized data structures
—Including addition of parallelism to scripting languages (funded by ST-

HEC program from NSF/DARPA)
• Met with Marmot team to explore collaboration opportunities
• Begun examination of applicability to codes written using Ajax

Programming System (e.g., FLAG)

Library Generator (LibGen)
• ARPACK

—Prof Dan Sorensen (Rice CAAM) maintains ARPACK, a large-scale
eigenvalue solver

• Methodology
—He prototypes the algorithms in Matlab, then generates 8 variants in

Fortran by hand:
– {Real, Complex} x {Symmetric, Nonsymmetric} x {Single,Double}
– Dense vs Sparse handled by special interface

• Could this hand generation step be eliminated?
—Answer: YES
—Key technology: Constraint-based type inference

– Polynomial time algorithm to compute type jump functions
 Map input types to variable types

LibGen Performance

Page ‹#›

Parallelism in Scripting Languages
• Tennessee Approach

—Global arrays resident on parallel ScaLAPACK server
– Operations executed local to data

—Accessible from Matlab, Python, Mathematica clients
– R should be an easy extension

—Working now

• Rice Approach
—Support for multiple distributions

– Standard plus user-defined
—Compilation to Fortran 90 + MPI

– Runs on back end server
—Telescoping languages + HPF technology for specialization

– Specialize each operation for each distribution
– Specialize communication for each distribution pair

—Funded by NSF ST-HEC (DARPA HPCS)

Rice Parallel Matlab

No expensive
HPF compile

Performance: 2D Stencil

512 x 512
(BLOCK,BLOCK)

Single-node compilation
improvement

Parallel Efficiency: 2D Stencil

512 x 512
(BLOCK,BLOCK)

Single-node compilation
improvement

Page ‹#›

LACSI Interactions
• Priorities and Strategies Meetings

—Inputs from Steven Lee and Ken Koch led to direction change

• Attended Workshops
—Common Component Architecture, LACSI Symposium 2002
—Initial Components Workshop (April 16-17, 2003)

• Discussions with Marmot Group
—Monterrey Methods Workshop (March 16-18, 2004)
—Components Workshop at LANL (June 24, 2004)

– Developed an outline plan for collaboration
—Additional meetings during LACSI visit Oct 31-Nov 3, 2005

• Meetings with Code Performance Team (Alme)
—October-November 2005 visit, December 2005

– Leading to focus on Ajax (Scott Runnels)

What We Plan to Do
• Seek (and solve) component integration challenge problem

—Emphasis on efficiency of frequent component-crossing
– Integration of data structure and function

• Explore opportunities in other ASC codes
—Initiating new project to explore improvements in Ajax programming

system (on FLAG)
– Telescoping languages and object-oriented optimizations

• Continue interactions with Marmot Project
—Goal: build tools to help them on their second or third iteration

• Explore application of parallel Matlab and R to V&V codes from
D1 (Dave Higdon)

• Relevance to ASC
—Success will make it easier to use modern component-based

software development strategies in ASC codes
– Without sacrificing performance

Specific Topics
• Specialization Strategies

—Specialized handling of multiple materials in cells
—Compiler-based specialization to sparse data structures
—Combined telescoping languages and dynamic code selection

– Optimization by limited computation reorganization

• Improved Translation within Ajax
• Tools for Preoptimization of Libraries

—Pre-specialization of library codes to expected calling contexts
—Potential source of components: Trillinos

• Mining of Traditional Applications
—Construction of libraries for inclusion in domain languages

• Rapid Prototyping Support
—Compilation of scripting languages (Python, Matlab) to Fortran/C

Automatic Component Tuning
• Participants: Four Groups within LACSI

—Tennessee: Jack Dongarra
– Collaboration with LLNL ROSE Group (Dan Quinlan, Qing Yi)

—Rice: Ken Kennedy and John Mellor Crummey
– Students Apan Qasem and Yuan Zhao
– Also collaborating with ROSE Group

—Rice: Keith Cooper, Devika Subramanian, and Linda Torczon
– Students Todd Waterman and Alex Grosul

Page ‹#›

Automatic Component Tuning
• Goal: Pretune components for high performance on different

computing platforms (in advance)
—Models: ATLAS, FFTW, UHFFT
—Generate tuned versions automatically

• Strategy: View as giant optimization problem with code running
time as objective function
—For each critical loop nest:

– Parameterize the search space
– Prune using compiler models based on static analysis
– Employ heuristic search to find optimal point and generate

optimal code version
—Typical optimizations:

– Loop blocking, unroll, unroll-and-jam, loop fusion, storage
reduction, optimization of target compiler settings, inlining,
optimization of function decomposition

New Autotuning Work
• Combination of three optimizations (student: Apan Qasem)

—Cache tiling, register blocking, and loop fusion (new)

• Loop fusion
—Critical for performance, particularly on Fortran 90 codes

– Array assignments are “scalarized” in multiple dimensions
– Fusion can dramatically enhance memory performance

—Problems:
– too much fusion can lead to conflict misses
– fusion and tiling interactions can degrade performance

—Strategy:
– Strategy: construct combined model that predicts “effective cache

size” (fewer than 2.5% conflict misses) then fuse and tune to that
size

– Advantage: many fewer evaluations, basically same performance

Automatic Tuning
• Successes

—Experimental infrastructure
– LoopTool, MSCP, ATLAS2, CODELAB

—Large-scale experiments
—Principles demonstrated

– Effectiveness of heuristic search (including parallel search)
– Importance of search-space pruning using compiler models

—Papers published
– Ten refereed publications and one technical report (see web site)

—Established an Autotuning Community
– LACSI Workshop 2005

• Relevance
—Dramatically increases productivity of scientific programming

• Connections to ASC
—Sweep3D (1.3x on Alpha), ASC performance group, Marmot, Truchas

Summary
• Component integration languages and frameworks

—High Level: Matlab, S, Python plus component libraries
—Low Level: C, C++, Fortran

• Compilation technology
—Type inferencing to drive translation to C or Fortran
—Telescoping languages to pre-optimize libraries
—Parallelism in scripting languages

– Parallelism based on distribution
• Component Autotuning

—Goal: ATLAS-style automatic tuning for generalized applications,
UHFFT-style automatic tuning for decomposable (library) components

—Exploring heuristic search and static search-space pruning
• Technology Transfer

—Focus component integration on problems arising from ASC code
projects

—Automatic tuning applicable to general languages

