System Software for High-Performance Communication

Arthur Maccabe University of New Mexico

http://lacsi.rice.edu/reviews/slides_2006

Overview

Goal

- —Building scalable systems software
- —Scaling requires that we understand how resources are used and the benefits of adding resources

Approach

- —Modeling to understand how resources might be used
 - Modeling protocol offload
- —Monitoring to understand how applications use resources
 - System call monitoring
 - Message-centric monitoring
- —Implementation to illustrate scaling
 - Open MPI on Infiniband

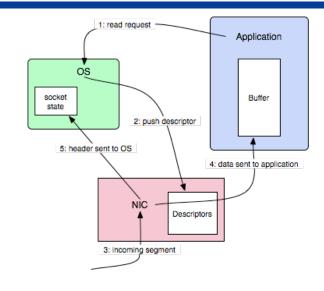
Faculty

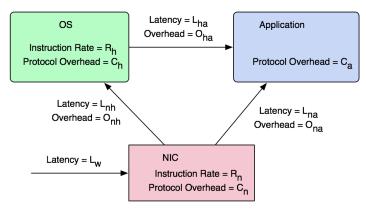
—Bridges & Maccabe

Modeling Protocol Offload

Publications

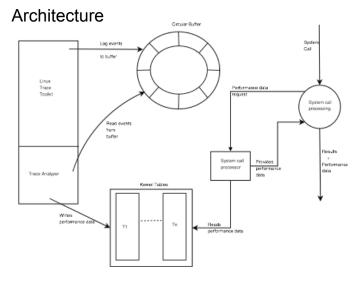
- —"Modeling Protocol Offload for Message-oriented Communication," IEEE Cluster 2005
- —"An Extensible Message-Oriented Offload Model for High-Performance Applications," LACSI Symposium 2005
- Patricia Gilfeather, PhD, Fall 2005
- Basic Idea
 - —Develop a model to explore the benefits of *partial* protocol offload.
 - Leave error processing on host processor
 - Minimize NIC resources while maximizing performance
 - —Specific interest in partial offload of TCP/IP (commodity protocol).


Highlight

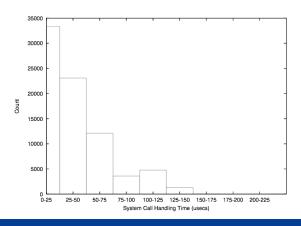

- —Working with SeaFire to explore commercial product based on partial offload.
- —Specific application Grid FTP at 40Gbps.

Modeling Protocol Offload

- Partial Offload (Splintered Implementations)
 - —Isolate functionality
 - —Distribute functionality
 - —Constrain NIC resources
- EMO (Extensible Message-Oriented Model)
 - —An extension of LogP
 - —Focus on NIC design "what if designs"
 - Where to add resources
 - Benefits to additional offload
- Comparison to LAWS and LogP
- Initial Validation

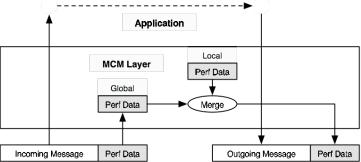

System Call Monitoring

Publication

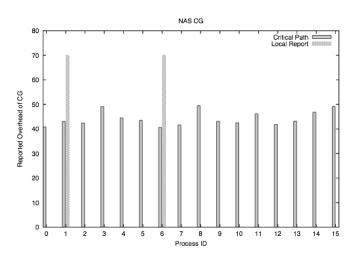

- "A Framework for Analyzing Linux
 System Overheads on HPC
 Applications," LACSI Symposium 2005
- Sushant Sharma, MS Summer 2005, now in CCS1
- Basic idea
 - Need to monitor system calls to better understand the interaction between operating system implementation and application performance
 - —Extend LTT (Linux Tracing Toolkit)

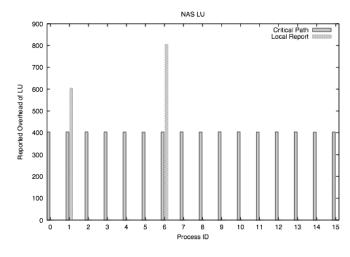
Highlight

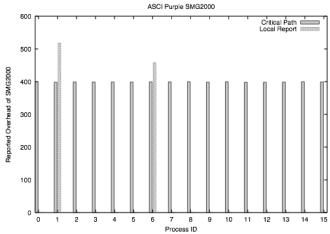
—Monitoring overhead is minimal (~3-6%)


Distribution of time spent in recvfrom syscall (NAS CG-B)

Message-Centric Monitoring


- Publications
 - —"Online Critical Path Profiling for Parallel Applications," IEEE Cluster 2005
- Wenbin Zhu, PhD student
- Basic idea
 - —Tag local information into application messages
 - —Merge local data with data from incoming messages to provide global view (critical path)
- Highlight
 - -<3% overhead
 - —Able to detect injected overhead
 - —Online analysis





Message-Centric Monitoring

Online analysis

Nodes 1 & 6 detect additional overhead

Open MPI on Infiniband

- Publication
 - —"Infiniband Scalability in OpenMPI," IPDPS 2006
- Galen Shipman, MS Fall 2005, now in CCS1
- Basic idea
 - —Develop and Open MPI implementation for Infiniband
- Highlight
 - —Compared to MVAPICH
 - Small message latency improved by 10%
 - Per host memory usage decreased by 300%
 - Latency is highly predictable

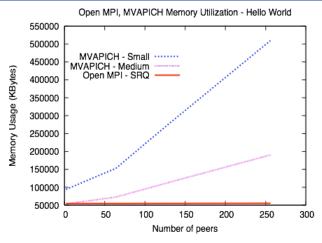
Open MPI on Infiniband

Approach

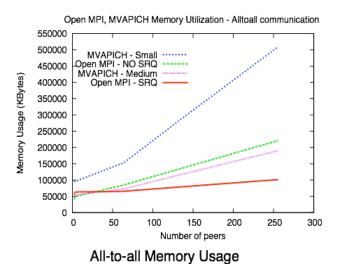
—MVAPICH

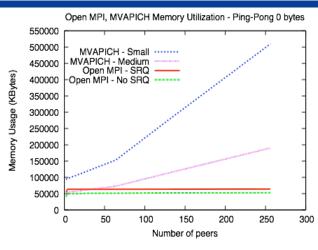
- Uses pure RDMA protocol
- Allocates a buffer per peer
 Memory use
 Latency depends on node index

—Open MPI

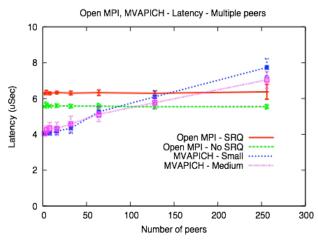

Uses send/receive for small messages

good latency for node 0 or 1:)


- Uses a Shared Request Queue (SRQ) for completions Issue: no flow control when using SRQ!
- Dynamic allocation of communication buffers reflects actual use of communication resources by application

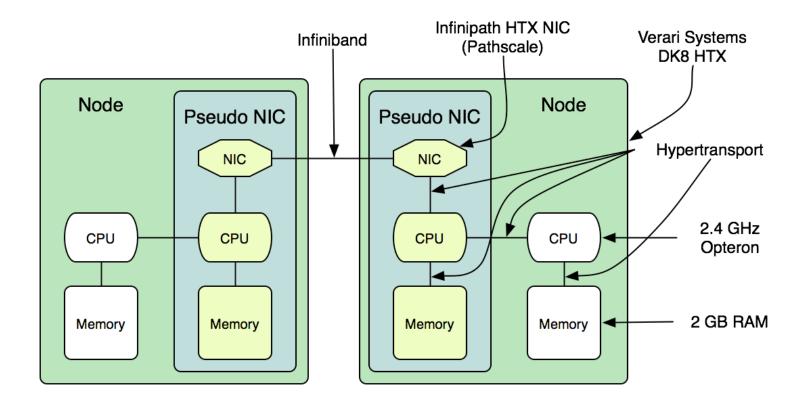


Open MPI on Infiniband



Hello world Memory Usage

Pairwise Ping-pong Memory Latency



Multi-node Zero Byte Latency

Future

• Offload Testbed – beyond modeling, implement and measure

Summary

- Focus on
 - —Improving communication performance
 - —Measuring performance
- Degrees
 - —Two MS degrees
 - Sushant started working for Wu Feng and is now working for Ron Minnich
 - Galen is working for David Daniel
 - —One PhD
 - Patricia is currently working as a postdoc at UNM
- Relevance to WSR
 - —Need to understand and manage resource usage
 - Monitor to understand
 - Manage resources to build scalable systems

