
Compilers and Compiler-based
Tools for HPC

Recent Achievements

John Mellor-Crummey
Department of Computer Science

Rice University

http://lacsi.rice.edu/review/slides_2006/

Participants
• Graduate Students

—Yuan Zhao, Nathan Froyd, Apan Qasem, Yuri Dotsenko, Cristian Coarfa

• Research Staff
—Nathan Tallent, Fengmei Zhao

• Research Scientists
—Robert Fowler, Guohua Jin

• Faculty
—Ken Kennedy, John Mellor-Crummey

• LANL Interactions
—David Montoya, Chip Kent, Hank Alme, Jeff Brown, Olaf Lubeck, Craig

Rasmussen, Matt Sottile, Greg Watson

Immediate Impact in Support of ASC Mission Goals

Long Term Research Affecting Future HPC Systems

Performance & memory
diagnosis tools

Hand application of
aggressive transformations
to important codes

Compiling for computational
accelerators

Source-to-source
transformation tools

High-level data-parallel
programming systems

Fundamental compiler
algorithms

Detailed performance
modeling of applicationsCompilation techniques

for SPMD languages
(UPC, CAF)

Overview of Ongoing and Future Impact

Open source compilers

Outline
• Tools for analyzing program performance and correctness

—call stack profiling
—memory analysis

• Performance modeling
—predicting memory hierarchy response for scientific applications

• Compiler technology
—computational accelerators
—programming models for scalable parallel systems

– Co-array Fortran
– compiler technology for global view languages

Code Performance and the ASC Mission

• Performance of ASC codes is an area of ongoing concern
—LANL performance team: Peery, Graham, Alme2, Brown, Koch

• Today: LANL using Rice’s HPCToolkit to assess code performance
• Issue: HPCToolkit doesn’t address the whole problem

 Background: HPCToolkit’s Flat Profiles
• What: measure resources consumed by an application

—time
—memory accesses
—cache misses

• How: statistical sampling
—time
—hardware performance counter events

• Where: attribute resource consumption back to source code
—procedures
—source lines
—loops

• What’s missing: calling context

Understanding Costs In Context
Call Path Profiling

• Measure resource consumption in each procedure
• Attribute upward along call chain
• Report average consumption per call per calling context

50
d

c

a b

main

Call
Graph c

a b

40
d

main

10
d

c
 Calling
Context

Tree

Why Calling Context Matters
• Modern program development strategies

—layered design
– communication libraries in parallel codes
– math libraries

—generic programming, e.g. C++ templates
– both data structures and algorithms

• Resource consumption is extremely context dependent
—which call to MPI in an application blocks the longest?
—which matrix solve consumes the most time?
—which instance of the C++ map template is costly?

Improving code performance requires knowing how code is used

A Tiny Motivating Example

#define HUGE (1<<28)

void d() {}

void c(long n) {
 for(int j=0; j<HUGE/n; j++) d();
}

void a(void (*f)(long)) { f(1); f(1); }

void b(void (*f)(long)) { f(2); f(2); f(2); f(2); }

void main() { a(c); b(c); }

c

a b

d

main

d

c

Results with Existing Tools
(for our motivating example)

• Instrumentation-based profilers
—Vtune

– increases execution time by a factor of 31 (P4+Linux)
—gprof

– cannot distinguish different costs per call for calling contexts
 average time assumption

– increases execution time by a factor of 3 - 14 (P4, PowerPC, Alpha)

• Pure callstack sampling profilers
—Shark, scgprof, qprof

– cannot distinguish different costs per call for calling contexts
 know full contexts in which costs were incurred
 no knowledge of how many calls per context

csprof: 1.5% overhead; accurate context-based attribution

Our Approach
• Attribute events to calling context with call stack sampling

—at each sample event
– walk the call stack to discover calling context

 chain of callsite PCs + current PC
– record the calling context in a tree

 insert calling context as a path from tree root to leaf
– increment sample count for path leaf

• Associate a frequency count with each edge in the context tree

c

a b

d

main

d

c

Nathan Froyd. Efficient Call Graph Profiles on Unmodified Optimized Code. Masters Thesis,
Dept. of Computer Science, Rice University, April 2005.
Nathan Froyd, John Mellor-Crummey, and Rob Fowler. “Low-Overhead Call Path Profiling
of Unmodified, Optimized Code.” ICS 05, Cambridge, MA, June 2005.

Edge Counting with a Trampoline
• At each sample

—remove inserted trampoline (if any)
—interpose a trampoline between leaf and caller

• When a trampoline is triggered
—increment count for associated call edge
—move trampoline up one level in the call stack

Benefits of Our Approach
• Supports profiling of fully-optimized code

—doesn’t disrupt optimization with instrumentation
—permits optimized procedure linkage

– no frame pointers, register frame procedures, tail calls

• Operates with low, controllable overhead
—overhead proportional to sampling frequency not calling frequency

• Minimizes distortion of application performance
—no instrumentation of function entries: minimizes call dilation

• Requires no changes to build process
—no special compilation (e.g. gprof’s compile-time instrumentation)
—initiates monitoring at program launch using preloaded library

Alpha Experiments: CINT2000 Benchmarks

Benchmark
Base time

(seconds)

gprof

overhead

(%)

gprof number

of calls

csprof

overhead

(%)

164.gzip 479 53 1.960E+09 4.2

175.vpr 399 53 1.558E+09 2.0

176.gcc 250 78 9.751E+08 N/A

181.mcf 475 19 8.455E+08 8.0

186.crafty 196 141 1.908E+09 5.1

197.parser 700 167 7.009E+09 4.6

252.eon 245 263 1.927E+09 3.4

253.perlbmk 470 165 2.546E+09 2.5

254.gap 369 39 9.980E+08 4.1

255.vortex 423 230 6.707E+09 5.4

256.bzip2 373 112 3.205E+09 1.1

300.twolf 568 59 2.098E+09 3.0

115 3.9Average overhead

Alpha Experiments: CFP2000 Benchmarks

Benchmark
Base time

(seconds)

gprof

overhead

(%)

gprof number

of calls

csprof

overhead

(%)

168.wupwise 353 85 2.233E+09 2.5

171.swim 563 0.17 2.401E+03 2.0

172.mgrid 502 0.12 5.918E+04 2.0

173.applu 331 0.21 2.192E+05 1.9

177.mesa 264 67 1.658E+09 3.0

178.galgel 249 5.5 1.490E+07 3.2

179.art 196 2.1 1.110E+07 1.5

183.equake 549 0.75 1.047E+09 7.0

187.facerec 267 9.4 2.555E+08 1.5

188.ammp 547 2.8 1.006E+08 2.7

189.lucas 304 0.3 1.950E+02 1.9

191.fma3d 428 18 5.280E+08 2.3

200.sixtrack 436 0.99 1.030E+07 1.7

301.apsi 550 12 2.375E+08 1.6

14.6 2.5Average overhead

Integer programs Floating-point programs

csprof gprof csprof gprof

Minimum 0.7 7.6 0.4 0.3

Median 2.9 15.0 3.6 2.4

Mean 8.0 23.0 5.0 4.1

Maximum 51.0 120.0 18.0 15.0

!

distortion(p,X) = PX (f) " PDCPI (f)
f # functions(p)

$

Assessing Profiler Distortion
• How accurately does profiler assign costs to individual functions?

—measure "baseline" with DCPI: close to real program behavior

• Results

• csprof accurately attributes to calling context with low distortion
—less distortion for integer benchmarks
—competitive for the FP benchmarks

From Profiling to Memory Leak Diagnosis
• LANL believes that memory leaks cause a classified code to fail

—discussed in June DRC meeting and during November visit by Rice

• Finishing a memory leak diagnosis tool for production codes
—use call stack profiling infrastructure
—use a preloaded library to synchronously profile malloc and free

– malloc: bytes allocated in each calling context
– free: bytes deallocated in each calling context

—catch and report asynchronous segmentation fault (if any)

Memprof

Performance Modeling Toolkit
Object
Code

Binary
Instrumenter

Instrumented
Code

Execute

BB
Counts

Communication
Volume &
Frequency

Memory
Reuse

Distance

Binary
Analyzer

Control flow graph
Loop nesting
structure
BB instruction mix

Post Processing Tool

Architecture
neutral model Scheduler

Architecture
Description

Performance
Prediction
for Target

Architecture
Static Analysis

Dynamic
Analysis

Post Processing

Predicting Schedule Latency for an Architecture
• Input:

—basic block and edge execution frequencies

• Methodology:
—infer executed paths from BB and edge frequencies
—native instructions → generic RISC instructions
—instantiate scheduler with architecture description
—construct instruction schedule for executed paths

– consider instruction latencies and dependencies

Gabriel Marin and John Mellor-Crummey. "Scalable Cross-Architecture Predictions of Memory
Hierarchy Response for Scientific Applications." Proceedings of LACSI 2005 (October 2005).

Scheduling Graph Example

A[i+1][j]

A[i][j]

A[i-1][j]

A[i-2][j]

i

jA[i][j] = c1*A[i-2][j] + A[i-1][j] + A[i+1][j]

d=1

d=1

d=2

d=2

d=1

d=1

.L2: fmuld %f0, %f2, %f6
 ldd [%o1], %f4
 add %o5, 0x1, %o5
 ldd [%o3], %f8
 add %o2, %l2, %o2
 add %o1, %l2, %o1
 add %o3, %l2, %o3
 cmp %o5, %l4
 faddd %f6, %f4, %f10
 faddd %f10, %f8, %f12
 std %f12, [%o4]
 add %o4, %l2, %o4
 bl,a,pt %icc,.L2
 ldd [%o2], %f2

A[i-1,j]

A[i+1,j]

A[i,j]

A[i-2,j]

8*%i0+%i1 8*%i0 8

24*%i0+%i1 8*%i0 8

16*%i0+%i1 8*%i0 8

8*%i0+%i1 8*%i0 8

First location i-stride j-stride

void compute(int size, double* A, double c1) {
 for(int j=0 ; j<size ; ++j)
 for(int i=2 ; i<size-1 ; ++i)
 A[i*size+j] =
 c1*A[(i-2)*size+j] +
 A[(i-1)*size+j] + A[(i+1)*size+j];
}

Scheduling Graph Example

A[i,j]

A[i-2,j]

A[i+1,j]

A[i-1,j]

1

6

4

4 C1 = 15 cycles/iter

16

4

C2 = 19/2 = 10 cycles/iter

• Employ integrated techniques for vectorization, padding, alignment,
scalar replacement to compile for short vector machines

• Extending source-to-source vectorizer to support CELL

DO J = 2, N-1; A(2:N-1, J) = (A(2:N-1, J-1) + A(2:N-1, J+1) + A(1:N-2, J) + A(3:N, J))/4; ENDDO

1.72

2.34

2.39

2.19

Speedup of
cLalign+VPAR
to cOrig+V on
Pentium IV (Intel Compiler)

1.81

1.88

1.85

1.23

Speedup of
cLalign+VPARS
to Orig+V on
PowerPC G5 (VAST)

Compiling for Computational Accelerators

Y. Zhao and K. Kennedy. Scalarization on Short Vector Machines." IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). Austin, Texas, March 2005.

Compilers for Scalable Parallel Systems
Parallel Programming Models

• MPI: de facto standard
—difficult to program

• OpenMP: inefficient to map on distributed memory platforms
—lack of locality control

• SPMD global address space languages
—CAF, Titanium, UPC

• Global view languages (e.g. HPCS languages, HPF)
—extremely sophisticated compilers needed for high-performance

CAF Sweep3D
Itanium2 + Quadrics, Size 150x150x150

Cristian Coarfa, Yuri Dotsenko, and John Mellor-Crummey. "Experiences with Sweep3D
Implementations in Co-array Fortran." Journal of Supercomputing. (In Press)

Global View Programming = Productivity
Delegate difficult tasks to the compiler and runtime

• Managing local address space computations
—partitioning data
—partitioning computation

• Managing communication
—where communication is needed
—what must be communicated

• Managing and indexing storage for non-local data

Compiling Global View Languages
• Partition data

—follow user directives
• Select mapping of computation to processors

—co-locate computation with data
• Analyze communication requirements

—identify references that access off-processor data
• Partition computation by reducing loop bounds

—schedule each processor to compute on its own data
• Insert communication

—exchange values as needed by the computation
• Manage storage for non-local data
D. Chavarria-Miranda and J. Mellor-Crummey. "Effective communication coalescing for data-parallel
applications." Symposium on Principles and Practice of Parallel Programming (June 15-17, 2005).
D. Chavarria-Miranda, G. Jin, and J. Mellor-Crummey. "COTS Clusters vs. the Earth Simulator: An
Application Study Using IMPACT-3D." IPDPS 2005 (April 4-8, 2005).

Immediate Impact in Support of ASC Mission Goals

Long Term Research Affecting Future HPC Systems

Performance & memory
diagnosis tools

Hand application of
aggressive transformations
to important codes

Compiling for computational
accelerators

Source-to-source
transformation tools

High-level data-parallel
programming systems

Fundamental compiler
algorithms

Detailed performance
modeling of applicationsCompilation techniques

for SPMD languages
(UPC, CAF)

Overview of Ongoing and Future Impact

Open source compilers

