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LACSI Impacts

Market forces and laboratory needs
—multicore chips and massive parallelism
— capability and capacity systems
—power budgets ($) and thermal stress

— economics and reliability

Tools and systems haven’t kept pace

ENSURING AMERICA'S

CoOMPE TITIVENESS

—scale, complexity, reliability and adaptation

—scale, measurement and reliability
. &5

— power management and cooling $

— prediction and adaptation °
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Federal policy initiatives ORAT
—June 2005 PITAC computational science report (chair) omson
“Computational Science: Ensuring America’s Competitiveness” “

— Computing Research Association (CRA) (chair, board of directors)
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— Innovate America partnership 2 ¥
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LACSI Research Evolution

* At last year’s review
—application fault resilience
—Ilarge-scale system failure modes
—HAPI health monitoring toolkit
—uniform population sampling

* This year
—AMPL stratified sampling toolkit
—Failure Indicator Toolkit (FIT)
—extended temperature/power measurements
—SvPablo application signature integration
—power-driven batch scheduling

* Research agenda driven by ASC challenges
—scale, performance and reliability
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You Know You Are A Big System Geek If ...

* You think a $2M cluster
—is a nice, single user development platform

* You need binoculars 1’:‘ ;
—to see the other end of your machine room Em ‘»
* You order storage systems

—and analysts issue “buy” orders for disk stocks E

* You measure system network connectivity
—in hundreds of kilometers of cable/fiber 5

* You dream about cooling systems . &
% !
—and wonder when fluorinert will make a comeback " \

* You telephone the local nuclear power plant
—before you boot your system
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The Rise of Multicore Chips

Intrachip parallelism
—dual core is here
— Power, Xeon, Opteron, UltraSPARC
—aquad core is coming in just months ...
— Intel, AMD, IBM, SUN
—Justin Ratter (Intel)
— “100’s of cores on a chip in 2015”

“Ferrari in a parking garage”
—high top end, but limited roadway

Massive parallelism is finally here
—tens and hundreds of thousands of tasks
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Scalable Performance Monitoring

* Scalable performance monitoring
—summaries, space efficient but lacking temporal detail
—event traces, temporal detail but space demanding

* At petascale, even summaries are challenging
—eXxorbitant data volume (100K tasks)
—high extraction costs, with perturbation risk

* Tunable detail and data volume
—application signatures (tasks)
— selectable dynamics
—stratified sampling (system)
— adaptive node subset

¢... awealth of information creates a poverty of attention, and a

need to allocate that attention efficiently among the
overabundance of information sources that might consume it.”
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Compact Application Signatures

* Motivations
—compact dynamic representations m ‘l‘)
—multivariate behavioral descriptions
—adaptive volume/accuracy balance

* Polyline fitting
—based on least squares linear curve fitting

~ 7 Trajectory

— measurement at user markers 7 Signature
—curves are computed in real-time
* Signature comparison 4
—degree of similarity (DoS) of q wrt p
t)-q(t)|dt
max [P0 -a@1dt o
ot NN
* SvPablo integration 2 TN\ N W \¢ AN

—marker selection inside GUI
—data capture library (DCL) signature generation
—signature browsing and comparison

* Adaptive measurement control 0 5 40 45 20 25

t (minute)

A ~ N
Source: Charng-da Lu (SC02 Best Student Paper Finalist) I_ CSI uy




Sampling Theory: Exploiting Software

* SPMD models create behavioral equivalence classes
—domain and functional decomposition

* By construction, ...
—most tasks perform similar functions
—most tasks have similar performance

* Sampling theory and measurement
—extract data from “representative” nodes
—compute metrics across representatives
—balance volume and statistical accuracy

Sampling Must Be Unbiased!

* Estimate mean with confidence 1-a and error bound d
—select a random sample of size n from population of size N

271
1+ N( d )
z,S

—approaches ZZ:S for large populations

LACSIs¥
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Adaptive Performance Data Sampling

* Simple case
—select subset n of N nodes
—collect data from the n

* Stratified sampling (multiple behaviors)
—identify low variance subpopulations
—sample subpopulations independently
—reduced overhead for same confidence

* Metrics vary over time
—samples must track changing variance
— number and frequency

call eos_result (nmi
I Set boundary conditions,
call sweepbc( nleft
call volume ( ngecn

—number of subpopulations also vary call ppm  { ngeon

ll |
e Sampling options . el vales (one
p g p | Punt updated valunes (minus

—fixed subpopulations (time series)
—random subpopulations (independence)

* Adaptive measurement control
—fix data volume (variable error)
—fix error (variable data volume)

LACSIs¥
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AMPL Framework

* AMPL

—Adaptive Performance Monitoring and Profiling On Large Scale Systems
—SvPablo and TAU integration

—Multiple performance data sources (PAPI and others)

SampleWindow = 5.0
Application WindowsPerUpdate = 4
Daemon UpdateMechanism = Subset
Instrumentation

Group {
_ _ Name = "Adaptive"
Adaptive Sampling Members = 0-127
Confidence = .90
. . Error = .03
Communication Layer )
. Data Transport Group {
Update Mechanism . = " ig"
P Mechanism Name 'Static
SampleSize = 30

Members = 128-255
PinnedNodes = 128-137

LACSIs¥
Source: Todd Gamblin uy



sPPM Sampling Results

Average Sample Sizes Predicted by AMPL

250
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* PAPI counter sampling
—5-14% overhead at 90% confidence and 8% accuracy
—7-14% overhead at 99% confidence and 1% error
— low variance metrics

LACSIs¥
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Execution Models and Reliability

* There are many execution models
—parameter space exploration
—single program, multiple data (SPMD)
—master/worker and functional decomposition
—dynamic workflow
— data and condition dependent execution

* Each amenable to different reliability strategies
—need-based resource selection
—over-provisioning

— SETI@Home model
—checkpoint/restart
—algorithm-based fault tolerance
—library-mediated over-provisioning
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Machine Room Microclimate

* Sensors for machine rooms
—multiple locations
— air ducts, racks, servers, ...
—multiple modes
— vibration, temperature and humidity

* Sensor options
—UC Berkeley/Crossbow motes
—WxGoos network sensors

* Infrastructure coupling
—HAPI for integrated data capture
— AMPL for statistical sampling !
—FIT for failure model generation P
— SvPablo for application instrumentation !
l

* Rationale
—micro-environment analysis
—thermal gradients and equipment placement

LACSIs¥
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A Tale of Three Clusters

* Old, homemade (Dell)
—standard Dell towers
—1 GHz Pentium lll dual processor nodes
—multiple rows of eight nodes
—GigE interconnect

* Clustermatic (Linux Labs)
—one 42U rack
—2 GHz Opteron dual processor nodes
—16 nodes plus head node
—Infiniband and GigE interconnects

* Vendor (Dell)

—17 standard racks, plus 4 network racks
—512 3.6 GHz Xeon dual processor nodes
—Infiniband interconnect

LACSIs¥
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Loading and Monitoring Details

* UC Berkeley/Crossbow motes
—temperature measurements

* Measurement locations

—air outlet on each node Mote
Sensor
* Benchmark Locations
—sPPM
* Observations
—rack cooling (or its lack) really matter
120
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Clustermatic Temperature Profile

-Temperature (C)

* Measurement locations

* Multiple benchmarks

—sPPM and Sweep3D (multiple data sets) = WxGoos
—~10 minute lag on cool down (larger data) Sensors

24

a2

20

18

16

14

* WxGoos hardware

—temperature, power, humidity, ...

—air outlets, sensors on rack door

T Y T [ i PV WV
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Large Cluster: Top500 Benchmarking

* UC Berkeley/Crossbow motes
—temperature measurements

* Measurement locations
—air inlets and outlets

* Multiple benchmarks
—primarily Top500 (HPL)

. Light Load g
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Large Cluster: Top 500 Benchmarking

Temperature (C)
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UNC HAPI Implementation

* Health Application Programming Interface (HAPI)
—standard interface for health monitoring (by analogy with PAPI)
—ACPI (Advanced Configuration and Power Management)
—SMART (Self Monitoring, Analysis and Reporting Technology)

* Release available at www.renci.org

User Application(s)

I

Health Application Programmer Interface (HAPI) <_Taklf[a(lllrl:'ﬁ |n|dica.1;'c(.)r .
0] I . Classitication

Im_sensors SMART | ACPI other...

L1

Hardware (CPUs, fans, power supplies, etc)

LACSIs¥
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Failure Indicator Toolkit (FIT)

* Concept

—measure failure indicators
— disks, networks, ... Threshold/Rank Sum Predictors

FIT

—adapt based on MTBF Data Source Interface
— checkpoint frequency

— memory, motherboards AV VA _I
—predict likely failures Exponential/Weibull Failure Models l

— batch scheduling, ...

| NWsDaaTranspot |
* Approach
—standard data interfaces _
—statistical classifiers
— failure prediction
—application controller
— adaptation

Im_sensors

Source: Cory Quammen



FIT Adaptive Checkpointing

Checkpoint Server

Application Controller

Reliability Estimator

Classifiers

>

Data Interface

v

Process

\ 4

NWS Sensor

HAPI

NWS Sensor

Process

NWS Sensor

r

HPC System
Node Node
Node Node

HAPI

HAPI

P

NWS Sensor

HAPI

* Checkpointing frequency
— application driven
— susceptibility to faults
— reliability driven
— application needs
— system capabilities

* Adaptive checkpointing
— FIT MTBF estimate
— application controller

* Experiments beginning ...

Source: Cory Quammen
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Failure Assessment Experiments

Disk data (from Murray et al)
—177 good disks (tested at manufacturer)
—191 failed disks (customer returns)
— 64 attributes (55 usable)
—observations every two hours

up to 300 observations/disk

Assessment approach

—randomly sample the population
all observations from good disks
—determine min/max of attributes, e.g.,
read head flying height (min)
write errors (max)
—test each good and bad disk
violation of threshold definitions

Preliminary results
—71% accurate prediction
with no false positives

Histogram of True Positive Rate
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Source: Cory Quammen
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Large Scale Adaptation Examples

* Batch queue selection Application

—application fault sensitivity 1
—predicted partition reliability Fault Tolerant MPI Diskless Checkpoint |8

Space Optimization

x Fault Detection &
—power/temperature constraints MPI

Automatic i Data  Redundancy
Recovery Recovery  Encoding

Storage Choi

* Checkpoint frequency
—application fault sensitivity
—predicted partition reliability

* Redundancy application
—spare nodes for reliable execution

* Power aware code optimization
—tuning for power/performance/reliability

* OS suicide hotline
—adaptive personality management
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Job Scheduling Policies and Power

* Today, batch scheduling is largely power oblivious
—utilization and delay metrics dominate
—predominantly First Come First Serve (FCFS)

— backfilling to improve utilization

* Power and temperature implications
—temperature transients lag job completion
— cooling costs
—power budgets are increasingly important
— fluctuating demands on power infrastructure

* Goals
—bound total power consumption
—minimize utilization and delay impact

LACSIs¥
Source: Shobana Ravi uy



Very Preliminary Evaluation

Total Run Time

* LANL CM-5 workload | | | ~rors
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