Component Integration and
Optimization

For High Productivity and Performance

Ken Kennedy

Rice University

http://lacsi.rice.edu/review/2004/slides/components.pdf

LACSIa»



Participants

* LANL

— Staff: Craig Rasmussen

— Student: Christopher D. Rickett
* Rice

— Faculty/Staff: Ken Kennedy, Bradley Broom*, Zoran Budimlic, Keith Cooper,
Arun Chauhan™, Rob Fowler, Guohua Jin, Tim Harvey, Chuck Koelbel, John
Mellor-Crummey, Steve Reeves, Linda Torczon

— Students: Raj Bandyopadhyay, Alex Grosul, Mack Joyner, Cheryl McCosh,
Apan Qasem, Todd Waterman, Rui Zhang, Yuan Zhao
* Tennessee
— Faculty/Staff: Jack Dongarra, Keith Seymour
— Students: Haihang You, Jelena Pjesivac-Grbovic,and Jeffery Chen

* Houston
— Faculty: Lennart Johnsson
— Students: Ayaz Ali, Purvi Shah, Haiyan Teng

LACSIa»



Outline

Component Integration Systems
—Support for the maintenance and optimization of component libraries
— High-productivity languages

Retargetable High Performance Components
— Automatic tuning of components for specific computing platforms
— Design of adaptive components

Application Drivers from LANL Weapons Program
—Marmot, Telluride, Project A

Previous Projects, Phased Down
—High-Level Java Optimization

—Program Preparation for Heterogenous Computing Environments
(e.g., Grids)

LACSIa»



Component Integration System

* Component integration systems are important productivity tools

* Programs constructed from them are often slow
—No context-based code improvements can be applied

* Claim: Telescoping languages can address this problem

—Can be applied to construct component integration systems that
yield high-performance applications

—Can make components usable in contexts that have been previously
considered impractical

* ASC Relevance

— Component-based software is critical for productivity and reliability
—Performance must be high for software to be usable
—Useful to prototype in high-productivity language (Python, Matlab)

LACSIa»




Component Integration Challenge

* Integration of different component libraries that
—Implement data structures (e.g., sparse matrices)
— Implement functions on data structures (e.g., linear algebra)

* Problem: Performance

—High function overhead for data structure access (frequently
invoked)

—Need optimization for special contexts

- e.g., invocation in loops

* Claim: Telescoping languages can handle this well
— Advance generation of specialized entries
— Transformation pass to perform substitution

LACSIa»



Telescoping Languages

Component Could run for hours

Library

Optimizer
Generator

Abblication Application Application :{;ders'ranlc:s
PP Translator Optimizer ' r'ar.'y ,Cfl y
as primitives

T ,

Scripting language or Vendor Op'fimized
standard language, Combiler Apblicati
ication
(Fortran or C++) P pplica

LACSIa»



Telescoping Language Advantages

Optimized script compilation times can be reasonable
—Investment in library analysis speeds script optimization

High-level optimizations possible
—Exploit library designer’'s knowledge of routine properties

— Specialize library routines during optimizer generation to exploit
expected calling sequences

- Apply high-level transformations based on identities
- Factor and/or fuse library primitives as appropriate

User retains substantive control over performance

— Mature code can be built into a library, annotated with properties
to aid optimization and fed to library compiler

Reliability can be improved
—No hand coding to context

LACSIa»



What We Have Done

* Developed base-language compiler technology

—Type inference: Key to generation of C or Fortran from Matlab, S,
or Python

- Useful even if C++ or Fortran is your scripting language

* Conducted preliminary studies
— Matlab SP (Signal Processing), LibGen (library generation)
- Six papers, one Ph.D., two Master’s
—R compilation (funded separately by DOD)

* Demonstrated benefits of telescoping languages as component
integration system (via LibGen)

* Developed strategy for generalized data structures

—Including addition of parallelism to scripting languages (funded by
ST-HEC program from NSF/DARPA)

* Met with Marmot team to explore collaboration opportunities

LACSIa»




Library Generator (LibGen)

* ARPACK
—Prof Dan Sorensen (Rice CAAM) maintains ARPACK, a large-scale
eigenvalue solver
* Methodology

—He prototypes the algorithms in Matlab, then generates 8 variants
in Fortran by hand:

- {Real, Complex} x {Symmetric, Nonsymmetric} x {Single, Double}
- Dense vs Sparse handled by special interface

* Could this hand generation step be eliminated?
— Answer: YES
—Key technology: Constraint-based type inference
- Polynomial time algorithm to compute type jump functions
Map input types to variable types

LACSIa»



LibGen Performance

B MATLAB 6.1 B MATLAB 6.5 B ARPACK W LibGen
800

600

400

200

1,000,000x1,000,000

LACSIa»



Value of Specialization

B sparse-symmetric-real B dense-symmetric-real
B dense-symmetric-complex M dense-nonsymmetric-complex

25
20
15

10

0.072 sec

LACSIa»



Distribution and Parallelism

Strategy: Add distribution to Matlab arrays
— Standard libraries plus user-implemented distributions
— Distribution libraries (e.g. block) packaged with language

Telescoping compiler optimizes distribution accesses
— Mimics standard optimizations, such as vectorization of accesses

- This is simply procedure strength reduction

Parallelism by HPF-style computation generation

— Computation performed close to data

—Rice has strong HPF technology in place

—HPF compilation (slow) applied only to components (not to script)

Project spun out into NSF ST-HEC proposal
—Funded through DARPA HPCS

LACSIa»



LACSI Interactions

* Priorities and Strategies Meetings

—Inputs from Steven Lee and Ken Koch were pivotal in direction
change

* Attended Common Component Architecture (CCA) Workshop
—LACSI Symposium 2002

* Initial Components Workshop (April 16-17, 2003)
—Organized by Craig Rasmussen

* Discussions with Marmot Group
— Monterrey Methods Workshop (March 16-18, 2004)
— Components Workshop at LANL (June 24, 2004)

- Developed an outline plan for collaboration

LACSIa»



What We Plan to Do

* Seek (and solve) component integration challenge problem

—Based on work from ASC applications
—Emphasis on efficiency of frequent component-crossing
- Integration of data structure and function

* Continue interactions with Marmot Project
—Goal: build tools to help them on their second or third iteration
- Build on work on component integration and optimization of
object-oriented languages
* Explore opportunities in other ASC codes

* Relevance to ASC

— Success will make it easier to use modern component-based
software development strategies in ASC codes

- Without sacrificing performance

LACSIa»



Automatic Component Tuning

* Participants: Four Groups within LACSI
— Tennessee: Jack Dongarra
- Collaboration with LLNL ROSE Group (Dan Quinlan, Qing Yi)
—Rice: Ken Kennedy and John Mellor Crummey
- Students Apan Qasem and Yuan Zhao
—Rice: Keith Cooper, Devika Subramanian, and Linda Torczon
- Students Todd Waterman and Alex Grosul
—Univ of Houston: Lennart Johnsson
- Students Ayaz Ali, Purvi Shah, Haiyan Teng

LACSIa»



Automatic Component Tuning

* Goal: Pretune components for high performance on different
computing platforms (in advance)

—Models: ATLAS, UHFFT
—Generate tuned versions automatically

* Strategy: View as giant optimization problem with code running
time as objective function

—For each critical loop nest:
- Parameterize the search space
- Prune using static analysis

- Employ heuristic search to find optimal point and generate
optimal code version

— Typical optimizations:

- Loop blocking, unroll, unroll-and-jam, loop fusion, storage
reduction, optimization of target compiler settings, inlining,

optimization of function decomposition
LACSIES




Automatic Tuning

* Successes
—Experimental infrastructure
- LoopTool, MSCP, ATLAS2, CODELAB
—Large-scale experiments
—Principles demonstrated
- Effectiveness of heuristic search
—Papers published
- Seven refereed publications and one technical report (see web
site)
* Relevance
—Dramatically increases productivity of scientific programming

* Connections to ASC
— Sweep3D, Marmot, Truchas, Code A

LACSIa»



Some Previous Accomplishments

* JaMake Java Framework
— Collaboration with CartaBlanca Project
—Performs object inlining on arrays of objects
- Overcomes the cost of using full OO polymorphism
- Achieved 80% improvement on the LANL Parsek code
—Results apply to C++ and Python
Attracted NSF funding, published 6 refereed papers

* 6rid Research
—Drove performance prediction research
—Effective performance-model based scheduling
—VG6rADS: NSF ITR (Large)
—Ideas for Grid in a box

- Many future supercomputers will have heterogeneous computing
components: good scheduling will be critical for performance

LACSIa»




Summary

Component integration languages and frameworks
— High Level: Matlab, S, Python plus component libraries
— Low Level: C, C++, Fortran

Compilation technology
— Type inferencing to drive translation to C or Fortran
— Telescoping languages to pre-optimize libraries
— Parallelism in scripting languages
- Parallelism based on distribution

Component Autotuning

— Goal: ATLAS-style automatic tuning for generalized applications, UHFFT -
style automatic tuning for decomposable (library) components

— Exploring heuristic search and static search-space pruning

Technology Transfer
— Focus component integration on problems arising from Marmot project
— Automatic tuning applicable to general languages

LACSIa»



