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Outline
• Component Integration Systems

—Support for the maintenance and optimization of component libraries
—High-productivity languages

• Retargetable High Performance Components
—Automatic tuning of components for specific computing platforms
—Design of adaptive components

• Application Drivers from LANL Weapons Program
—Marmot, Telluride, Project A

• Previous Projects, Phased Down
—High-Level Java Optimization
—Program Preparation for Heterogenous Computing Environments

(e.g., Grids)



Component Integration System
• Component integration systems are important productivity tools

• Programs constructed from them are often slow
—No context-based code improvements can be applied

• Claim: Telescoping languages can address this problem
—Can be applied to construct component integration systems that

yield high-performance applications
—Can make components usable in contexts that have been previously

considered impractical

• ASC Relevance
—Component-based software is critical for productivity and reliability
—Performance must be high for software to be usable
—Useful to prototype in high-productivity language (Python, Matlab)



Component Integration Challenge
• Integration of different component libraries that

—Implement data structures (e.g., sparse matrices)
—Implement functions on data structures (e.g., linear algebra)

• Problem: Performance
—High function overhead for data structure access (frequently

invoked)
—Need optimization for special contexts

– e.g., invocation in loops

• Claim: Telescoping languages can handle this well
—Advance generation of specialized entries
—Transformation pass to perform substitution
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Telescoping Language Advantages
• Optimized script compilation times can be reasonable

—Investment in library analysis speeds script optimization

• High-level optimizations possible
—Exploit library designer’s knowledge of routine properties
—Specialize library routines during optimizer generation to exploit

expected calling sequences
– Apply high-level transformations based on identities
– Factor and/or fuse library primitives as appropriate

• User retains substantive control over performance
—Mature code can be built into a library, annotated with properties

to aid optimization and fed to library compiler

• Reliability can be improved
—No hand coding to context



What We Have Done
• Developed base-language compiler technology

—Type inference: Key to generation of C or Fortran from Matlab, S,
or Python
– Useful even if C++ or Fortran is your scripting language

• Conducted preliminary studies
—Matlab SP (Signal Processing), LibGen (library generation)

– Six papers, one Ph.D., two Master’s
—R compilation (funded separately by DOD)

• Demonstrated benefits of telescoping languages as component
integration system (via LibGen)

• Developed strategy for generalized data structures
—Including addition of parallelism to scripting languages (funded by

ST-HEC program from NSF/DARPA)

• Met with Marmot team to explore collaboration opportunities



Library Generator (LibGen)
• ARPACK

—Prof Dan Sorensen (Rice CAAM) maintains ARPACK, a large-scale
eigenvalue solver

• Methodology
—He prototypes the algorithms in Matlab, then generates 8 variants

in Fortran by hand:
– {Real, Complex} x {Symmetric, Nonsymmetric} x {Single,Double}
– Dense vs Sparse handled by special interface

• Could this hand generation step be eliminated?
—Answer: YES
—Key technology: Constraint-based type inference

– Polynomial time algorithm to compute type jump functions
  Map input types to variable types



LibGen Performance
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Distribution and Parallelism
• Strategy: Add distribution to Matlab arrays

—Standard libraries plus user-implemented distributions
—Distribution libraries (e.g. block) packaged with language

• Telescoping compiler optimizes distribution accesses
—Mimics standard optimizations, such as vectorization of accesses

– This is simply procedure strength reduction

• Parallelism by HPF-style computation generation
—Computation performed close to data
—Rice has strong HPF technology in place
—HPF compilation (slow) applied only to components (not to script)

• Project spun out into NSF ST-HEC proposal
—Funded through DARPA HPCS



LACSI Interactions
• Priorities and Strategies Meetings

—Inputs from Steven Lee and Ken Koch were pivotal in direction
change

• Attended Common Component Architecture (CCA) Workshop
—LACSI Symposium 2002

• Initial Components Workshop (April 16-17, 2003)
—Organized by Craig Rasmussen

• Discussions with Marmot Group
—Monterrey Methods Workshop (March 16-18, 2004)
—Components Workshop at LANL (June 24, 2004)

– Developed an outline plan for collaboration



What We Plan to Do
• Seek (and solve) component integration challenge problem

—Based on work from ASC applications
—Emphasis on efficiency of frequent component-crossing

– Integration of data structure and function

• Continue interactions with Marmot Project
—Goal: build tools to help them on their second or third iteration

– Build on work on component integration and optimization of
object-oriented languages

• Explore opportunities in other ASC codes

• Relevance to ASC
—Success will make it easier to use modern component-based

software development strategies in ASC codes
– Without sacrificing performance



Automatic Component Tuning
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Automatic Component Tuning
• Goal: Pretune components for high performance on different

computing platforms (in advance)
—Models: ATLAS, UHFFT
—Generate tuned versions automatically

• Strategy: View as giant optimization problem with code running
time as objective function
—For each critical loop nest:

– Parameterize the search space
– Prune using static analysis
– Employ heuristic search to find optimal point and generate

optimal code version
—Typical optimizations:

– Loop blocking, unroll, unroll-and-jam, loop fusion, storage
reduction, optimization of target compiler settings, inlining,
optimization of function decomposition



Automatic Tuning
• Successes

—Experimental infrastructure
– LoopTool, MSCP, ATLAS2, CODELAB

—Large-scale experiments
—Principles demonstrated

– Effectiveness of heuristic search
—Papers published

– Seven refereed publications and one technical report (see web
site)

• Relevance
—Dramatically increases productivity of scientific programming

• Connections to ASC
—Sweep3D, Marmot, Truchas, Code A



Some Previous Accomplishments
• JaMake Java Framework

—Collaboration with CartaBlanca Project
—Performs object inlining on arrays of objects

– Overcomes the cost of using full OO polymorphism
– Achieved 80% improvement on the LANL Parsek code

—Results apply to C++ and Python
Attracted NSF funding, published 6 refereed papers

• Grid Research
—Drove performance prediction research
—Effective performance-model based scheduling
—VGrADS: NSF ITR (Large)
—Ideas for Grid in a box

– Many future supercomputers will have heterogeneous computing
components: good scheduling will be critical for performance



Summary
• Component integration languages and frameworks

— High Level: Matlab, S, Python plus component libraries
— Low Level: C, C++, Fortran

• Compilation technology
— Type inferencing to drive translation to C or Fortran
— Telescoping languages to pre-optimize libraries
— Parallelism in scripting languages

– Parallelism based on distribution

• Component Autotuning
— Goal: ATLAS-style automatic tuning for generalized applications, UHFFT-

style automatic tuning for decomposable (library) components
— Exploring heuristic search and static search-space pruning

• Technology Transfer
— Focus component integration on problems arising from Marmot project
— Automatic tuning applicable to general languages


