

October 2004 FY05 LACSI SOW 1

Contract No: TBD Provide Medium to Long-term Computer
Science Research Relevant to the Goals
of the Advanced Simulation and
Computing (ASC) Program

LACSI Task TBD Los Alamos Computer Science Institute

External Computer Science Research

FY05 Statement of Work
September 24, 2004

• Components
This effort will incrementally develop two long-term goals.
Develop frameworks for integrating existing components rapidly and conveniently into complete

applications. These frameworks must be able to produce efficient applications from scripts
within reasonable compile times. In addition, they must be able to integrate components
written in different languages, particularly Fortran and object-oriented languages like C++
and Java. Finally, the frameworks must support the generation of applications that execute
with reasonable and reliable efficiency in a distributed computing environment.

Develop a collection of components for use in science and engineering applications. The
algorithms should be general, portable, and usable in a variety of situations.

Specific tasks and deliverables are described in Appendix A, Section 1.1.

• Systems
The systems activity focuses on research and advanced development of computer subsystems,
both hardware and software, of strategic interest to present and future ASC architectures. The
specific tasks and deliverables are described in Appendix A, Section 1.2.

• Computational Science
Provide research and development in the areas of numerical methods for partial differential
equations, linear and nonlinear solvers, and verification and validation methodologies to address
the following goals:
Develop, analyze and implement numerical methods for coupled multi-physics. Particularly

important is the discretization of partial differential equations by mixed and hybrid finite
element type methods.

Develop linear and nonlinear solvers algorithms.
Develop software tools suitable for large-scale simulation codes and automation of the process of

tuning those codes for efficiency on specific platforms.
The specific tasks and deliverables are described in Appendix A, Section 1.3.

October 2004 FY05 LACSI SOW 2

• Application and System Performance
Develop compiler and run-time technology that will help application developers achieve a high
fraction of peak performance on large-scale parallel computing systems. The specific tasks and
deliverables are described in Appendix A, Section 1.4.

• Computer Science Community Interaction
Foster collaborative relationships between LACSI participants at LANL and at the LACSI
academic sites using activities including:

• Host visitors and speakers at academic sites to encourage collaborative relationships
between researchers at LANL and at the participating academic institutions.

• Support scientific collaboration visits to Los Alamos National Lab to integrate research
products into operations.

• In conjunction with LANL, organize, host, and otherwise support a series of technical
workshops on topics related to the LACSI technical vision.

• Host an annual symposium to showcase LACSI results and to provide a forum for
presenting outstanding research results from the national community in areas overlapping
the LACSI technical vision.

Specific tasks and deliverables are described in Appendix A, Section 1.5.

Project Management

The implementation strategy and tasks associated with the academic LACSI projects are detailed
in Appendix A. Documentation regarding the objectives of the Institute may be found in the
latest LACSI “Priorities and Strategies” document.

Deliverables

• Quarterly status reports on milestones/deliverables

Other reports and briefings as required.

October 2004 FY05 LACSI SOW 3

Selected Milestones

Rice University
• Deliver a report on an experimental study that demonstrates the potential of automatic

code and data reorganization strategies, including object inlining, on Marmot prototype
code.

• Release a version of the Rice HPCToolkit performance software that is integrated with
Clustermatic for Opteron clusters. This will include options to use oprofile and
PAPI/perfctr for node-wide and application-specific data sources, respectively.

• Augment a serial (i.e. non-parallel) subset of the Truchas code by the Adifor90 automatic
differentiation tool to perform forward mode sensitivity computations for two selected
scalar inputs.

• Deliver a report exploring the impact of adaptive compilation and autotuning on selected
ASC codes.

• Produce implementation of Co-array Fortran for Clustermatic clusters. Demonstrate
functionality with CAF versions of LANL's Parallel Ocean Program and ASCI Sweep3D
applications.

University of Houston
• In collaboration with LANL staff, review a few multigrid codes chosen by LANL staff,

design an adaptive software package for the multigrid components of at least one of the
selected codes, and develop a first implementation for assessment of the merit of the
adaptive approach. Deliver report on preliminary findings.

• Develop, investigate, and evaluate on test problems relevant to ASC applications efficient
parallel algebraic preconditioners/solvers for polyhedral-mesh discretizations of 3D
diffusion equations.

University of New Mexico
• Using the Open MPI framework, provide an empirical study of the performance

implications associated with handling errors at different levels in the protocol stack.

University of North Carolina
• Develop tools and techniques for failure indicator monitoring and adaptation that support

the Clustermatic cluster infrastructure.

University of Tennessee, Knoxville
• Design a heterogeneity interface for Open MPI.

October 2004 FY05 LACSI SOW 4

Appendix A

Los Alamos Computer Science Institute
Statement of Work for Academic Participants

The Los Alamos Computer Science Institute (LACSI) was created to foster internationally
recognized computer science and computational science research efforts relevant to the goals of
Los Alamos National Laboratory (LANL). LACSI is a collaborative effort between LANL and
the Rice University Center for Research on High Performance Software (HiPerSoft), along with
its partner institutions: The University of Houston (UH), the University of New Mexico (UNM),
the University of North Carolina at Chapel Hill (UNC), and the University of Tennessee at
Knoxville (UTK).

LACSI was founded with the following goals:
• To build a presence in computer science research at LANL commensurate with the strength

of the physics community at LANL,
• To achieve a level of prestige in the computer science community on a par with the best

computer science departments in the nation,
• To pursue computer science research relevant to the goals of High Performance Computing

(HPC) programs at LANL, and
• To ensure that there remains a strong focus on high-performance computing in the academic

computer science community.
In keeping with these goals, LACSI researchers engage in joint high-performance scalable
computing research and in collaborative activities that foster a strong relationship between
LANL and the participating academic institutions.

In the following section, we present the vision, implementation strategy, and tasks associated
with LACSI projects at Rice University and its partner academic institutions. In the final
section, we describe the management and administrative plan for the LACSI academic partners.

October 2004 FY05 LACSI SOW 5

1. Strategic Thrusts
In March 2002, the LACSI Executive Committee (EC) met with LACSI researchers at LANL to
discuss methods of addressing issues raised in the 2001 LACSI contract review. The body was
tasked to develop priorities and strategies to meet LANL’s future programmatic and computer
science needs. The group developed a framework to address long-term strategic thrust areas.
Specific objectives were called out as near-term priorities. The objectives were folded into the
framework to form a coherent planning view. A description of the long-term vision, framework,
and objectives developed at the meeting is available in a document (LAUR #02-6613) titled
Priorities and Strategies.

In both April 2003, the LACSI EC met with senior LANL personnel to revise the framework,
priorities, and strategies established at the planning meeting in 2002 and Priorities and Strategies
was revised to incorporate the results of the April 2003 planning meeting (LAUR # 03-7355). In
February 2004, the EC again met with senior LANL personnel to revise the framework,
priorities, and strategies established in previous planning meetings. Priorities and Strategies is
being revised to reflect the results of the February 2004 planning meeting. The current
framework outlines five strategic thrust areas:
• Components
• Systems
• Computational Science
• Application and System Performance
• Computer Science Community Interaction
The following five subsections describe the vision, implementation strategy, and tasks associated
with the academic LACSI projects that fall under the five strategic thrust areas.

1.1. Components: Component Architectures for Rapid Application
Development and Composition in a Networked Environment

Investigators: Ken Kennedy, Zoran Budimlic, Keith Cooper, Jack Dongarra, Rob Fowler,
Guohua Jin, Lennart Johnsson, Charles Koelbel, John Mellor-Crummey, Dan Reed

LANL Collaborator: Craig Rasmussen

The goal of the component architectures effort is to make application development easier
through the use of modular codes that integrate powerful components at a high level of
abstraction.

Through modularization and the existence of well-defined component boundaries (specified by
programming interfaces), components allow scientists and software developers to focus on their
own areas of expertise. For example, components and modern scripting languages enable
physicists to program at a high level of abstraction (by composing off-the-shelf components into
an application), leaving the development of components to expert programmers. In addition,
because components foster a higher level of code reuse, components provide an increased
economy of scale, making it possible for resources to be shifted to areas such as performance,

October 2004 FY05 LACSI SOW 6

testing, and platform dependencies, thus improving software quality, portability, and application
performance.

A fundamental problem with this vision is that scientific application developers, particularly
those at Los Alamos National Laboratory, cannot afford to sacrifice significant amounts of
performance for this clearly useful functionality. Therefore, a central goal of the effort is to
explore integration strategies that perform context-dependent optimizations automatically as a
part of the integration process. This theme defines a significant portion of the research content of
the work described in the remainder of this section.

The overarching goal of this activity is to develop component architectures and component
libraries that can be used to support rapid prototyping of portable parallel and distributed
applications and rapid reconfiguration of existing applications. These architectures would be the
basis for frameworks for applying advanced compilation techniques, run-time system elements,
and programming tools to prepare applications for execution on scalable parallel computer
systems and distributed heterogeneous grids.

To succeed, this effort will need to accomplish two long-term goals.
1. It must explore frameworks for integrating existing components rapidly and conveniently

into complete applications. These frameworks must be able to produce efficient applications
from scripts within reasonable compile times. In addition, they must be able to integrate
components written in different languages, particularly Fortran and object-oriented languages
like C++ and Java. Finally, the frameworks must support the generation of applications that
execute with reasonable and reliable efficiency in a distributed computing environment.

2. It must explore the design and implementation component libraries for use in science and
engineering applications. Such libraries should be ideally suited for use in the rapid
prototyping frameworks developed as part of this activity. The algorithms must be general,
portable, and usable in a variety of situations. In addition, components themselves should be
auto-tunable for high performance on new computing platforms.

1.1.1. LACSI Component Integration Challenge

Investigators: Ken Kennedy, Zoran Budimlic, Keith Cooper, Jack Dongarra, Rob Fowler,
Guohua Jin, Lennart Johnsson, John Mellor-Crummey, Dan Reed

One of the most difficult challenges for component integration is the problem of integrating data
structure components (e.g., sparse matrices) with functional components (e.g., linear algebra).
This problem is hard because the frequency of invocation of data access methods places a
premium on high performance of the component interfaces. The long term-research section of
the proposal has taken this as a major focus for the next several years.

To drive this research in directions that are most useful to LANL, we will collaborate with
developers on the Marmot code teams to understand how component integration strategies can
make their efforts more effective overall. In particular, we will work to define a challenge
problem by specifying the interfaces and functionality of components within Marmot that
implement abstract meshes on which computations are carried out. These specifications will be
developed through a joint study between code developers and computer and computational
scientists within LACSI. A goal of this effort is to leverage the telescoping languages strategy for

October 2004 FY05 LACSI SOW 7

efficient component integration that is the subject of LACSI research. The ultimate goal is to
make it possible for the designer to specify data structures and functionality at a high level of
abstraction without sacrificing the efficiency required by production weapons codes.

FY05 Tasks:
• Organize and convene a series of meetings to explore research directions for components

in high-end computing with a special emphasis on the Marmot code. (Quarters 1-3)
• Produce a report defining componentization strategies for support of future generations of

ASC codes. (Quarter 4)

1.1.2. Supporting Technologies for Component Integration

Investigators: Ken Kennedy, Keith Cooper, Jack Dongarra, Guohua Jin, Lennart
Johnsson, John Mellor-Crummey, Dan Reed

The goal of this research is to develop compiler technologies and library designs that will make it
possible to automatically construct domain-specific development environments for high-
performance applications from collections of components. This effort will develop advanced
compiler technology to integrate collections of components into a high-performance application
without sacrificing the performance of hand-integrated codes.

In the strategy we envision, programs would use a high-level scripting language such as Matlab
or Python to coordinate invocation of library operations, although traditional languages such as
Fortran and C++ could also serve this purpose. Scripting languages typically treat library
operations as black boxes and thus fail to achieve acceptable performance levels for compute-
intensive applications. Previously, researchers have improved performance by translating scripts
to a conventional programming language and using whole-program analysis and optimization.
Unfortunately, this approach leads to long script compilation times and has no provision to
exploit the domain knowledge of library developers.

To address these issues we are pursuing a new approach called “telescoping languages,” in
which libraries that provide component operations accessible from scripts are extensively
analyzed and optimized in advance. In this scheme, language implementation consists of two
phases. The offline translator generation phase digests annotations describing the semantics of
library routines, combines them with its own analysis to generate an optimized version of the
library, and produces a language translator that understands library entry points as language
primitives. The script compilation phase invokes the generated compiler to produce an optimized
base language program. The generated compiler must (1) propagate variable property
information throughout the script, (2) use a high-level “peephole” optimizer based on library
annotations to replace sequences of calls with faster sequences, and (3) select specialized
implementations for each library call based on parameter properties at the point of call.

We will use this strategy to attack the problem of making component integration efficient enough
to be practical for high-performance scientific codes. Of particular importance in this context is
the problem of efficiently integrating data structure components (e.g., sparse matrices) with
functional components (e.g., linear algebra). This work will begin with a simple prototype of
Matlab (or Python) that includes arrays with data distribution. Specific array distributions for
sparse matrices will be explored as a way of understanding the crucial performance issues. In the

October 2004 FY05 LACSI SOW 8

long term, this may lead to a new strategy for introducing parallelism into Matlab and other
scripting languages—by distributing the arrays across multiple processors and performing
computations close to the data. (The parallel Matlab effort is leveraged through funding from the
NSF ST-HEC effort. In this project we hope to apply this work to ASC codes.)

Once the Matlab array prototype has been explored, we will focus on the Marmot mesh data
structures with the goal of demonstrating a prototype with adequate efficiency for use in
production codes based on these components. The ultimate goal is to make it possible to quickly
substitute different mesh data structures in a code without rewriting the functional components
and vice versa.

If this effort is to succeed, it must take into account two important realities. First, many
components will be constructed using object-oriented languages, so techniques for optimizing
such languages are critical. Second, the execution environments for the resulting programs may
be distributed, so the implementation must consider the performance implications of distributed
systems, even if the applications are compiled together.

October 2004 FY05 LACSI SOW 9

With these considerations in mind, we plan to pursue research in five fundamental directions:

Toolkits for Building Problem-Solving Systems: The effort will focus on the production of tools
for defining and building new domain specific PSEs, including:

• Tools for defining and building scripting languages based on well-known platforms, such
as Matlab and Python.

• Strategies for scalable parallelization of scripting languages such as Matlab and Python.
• Translation of scripting languages to standard intermediate code, especially languages

like C.
• Frameworks for generating optimizers for scripting languages that treat invocations of

components from known libraries as primitives in the base language.
• Optimizing translation of intermediate language to distributed and parallel target

configurations.
• Assessment of performance/fault tolerance and relation to user code
• Tools for integrating existing code.
• Demonstration of these techniques in specific applications of interest to ASC and LANL,

with a special emphasis on codes in the Marmot effort.

An important goal of this effort is to make it possible to build highly efficient applications from
script-based integration of pre-defined components. Building on the component architecture
efforts described in this section, we will pursue the novel strategy of “telescoping languages” to
make it possible to extend existing languages through the use of software components.

Advanced Component Integration Systems: This effort will explore the application of telescoping
languages technology to the component integration problem, with a particular emphasis on
integrating components that support data structures with those that implement functionality. The
effort will also consider technologies for optimizing accesses to the component interfaces
emerging from the Marmot code development efforts. The long-term goal of this research is to
produce a component integration framework that is efficient enough to be accepted by high-
performance application developers, such as those in the LANL ASC program.

Design for Efficient Component Integration: This effort will focus on the design and
specification of components that can be used in a PSE for high-performance computation.
Significant issues will be flexibility and adaptability of the components to both the computations
in which they are incorporated and the platforms on which they will be executed. In addition,
these components must have architectures that permit the effective management of numerical
accuracy. A specific issue of importance is design strategies for efficient data structure
components.

Component Systems for Heterogeneous Computing Systems: The key challenge in this area is to
construct applications that can be flexibly mapped to heterogeneous computing components and
adapt to changes in the execution environment, detecting and correcting performance problems
automatically. In this activity, we will explore the meaning of network-aware adaptive
component frameworks and what the implementation and optimization challenges are for
applications constructed from them. In addition, we will pursue research on middleware to
support optimal resource selection in heterogeneous environments. A major byproduct of this

October 2004 FY05 LACSI SOW 10

work will be performance estimators (described in Section 1.4.1, “Modeling of Application and
System Performance”) and mappers that can be used to map applications efficiently to
heterogeneous computing systems, such as distributed networks and single-box systems
containing different computing components (e.g., vector processors and scalar processors). The
latter is a characteristic of several planned HPC computing systems.

Compilation of Object-Oriented Languages: Object-oriented languages like C++, Java, and
Python have a number of attractive features for the development of rapid prototyping tools,
including full support for software objects, parallel and networking operations, relative language
simplicity, type-safety, portability, and a robust commercial marketplace presence leading to a
wealth of programmer productivity tools. However, these languages have significant
performance problems when used for production applications. In this effort we are studying
strategies for the elimination of impediments to performance in object-oriented systems.

To achieve this goal, we must develop new compilation strategies for object-oriented languages
such as C++, Java, and Python. This should include interprocedural techniques such as inlining
driven by global type analysis and analysis of multithreaded applications. This work would also
include new programming support tools for high-performance environments. Initially, this work
has focused on Java, through the use of the JaMake high-level Java transformation system
developed at Rice in collaboration with the LANL CartaBlanca project. This system includes two
novel whole-program optimizations, “class specialization” and “object inlining,” which can
improve the performance of high-level, object-oriented, scientific Java programs by up to two
orders of magnitude.

In the next phase of research, we will consider how to adapt these strategies to develop tools and
compilation strategies that would directly support the code development methodologies to be
used in the Marmot effort. Examples include not only the application of object inlining and class
specialization, but also the use of type analysis to support the elimination of dynamic dispatch of
methods, a major problem for high performance codes written in C++. We will also consider
ways to apply these compilation strategies to Python used as a high-level application prototyping
system.

FY05 Tasks:
• Produce a simple component integration system based on Matlab as a scripting language,

which would include the Matlab-to-C compiler developed under earlier LACSI support.
(Quarter 3)

• Design the component integration strategy for supporting the Marmot application
development and produce a report on the design. (Quarter 2)

• Develop a preliminary implementation for distributed matrices in Matlab and possibly
Python. (Quarter 4)

• Deliver prototype performance modeler for heterogeneous components. (Quarter 1)
• Design and develop preliminary tools to support object-oriented programming in high

performance applications, delivering a report describing them and experiments on their
effectiveness. (Quarter 4)

October 2004 FY05 LACSI SOW 11

1.1.3. Retargetable High-Performance Components and Libraries

Investigators: Jack Dongarra, Lennart Johnsson, Ken Kennedy

For many years, retargeting of applications for new architectures has been a major headache for
high performance computation. As new architectures have emerged at dizzying speed, we have
moved from uniprocessors, to vector machines, symmetric multiprocessors, synchronous parallel
arrays, distributed-memory parallel computers, and scalable clusters. Each new architecture, and
even each new model of a given architecture, has required retargeting and retuning every
application, often at the cost of many person-months or years of effort.

Unfortunately, we have not yet been able to harness the power of high-performance computing
itself to assist in this effort. We propose to change that by embarking on a project to use
advanced compilation strategies along with extensive amounts of computing to accelerate the
process of moving an application to a new high-performance architecture.

To address the problem of application retargeting, we must exploit some emerging ideas and
develop several new technologies.

Automatically Tuned Library Kernels: First, we will exploit the recent work on automatically
tuning computations for new machines of a given class. Examples of effective use of this
approach include FFTW, Atlas, and UHFFT. The basic idea is to organize the computation so
that it is structured to take advantage of a variety of parameterized degrees of freedom, including
degree of parallelism and cache block size. Then, an automatically generated set of experiments
picks the best parameters for a given new machine. This approach has been extremely successful
in producing new versions of the LAPACK BLAS needed to port that linear algebra package to
new systems. We will extend this work to systems that can automatically generate the tuning
search space for new libraries using automatic application tuning methodologies described in
Section 1.4, “Application and System Performance”.

Self-Adapting Numerical Software: We will explore new approaches to building adaptive
numerical software that overcomes many of the deficiencies of current libraries. An adaptive
software architecture has roughly three layers. First, there is a layer of algorithmic decision
making; the top level of an adaptive system concerns itself with the user data, and based on
inspection of it, picks the most suitable algorithm, or parameterization of such algorithms. The
component responsible for this decision process is an “Intelligent Agent” that probes the user
data and, based on heuristics, chooses among available algorithms. Second, there is the system
layer; software on this level queries the state of the parallel resources and decides on a parallel
layout based on the information returned. There can be some amount of dialog between this level
and the algorithmic level, since the amount of available parallelism can influence algorithm
details. Finally, there is the optimized libraries level; here we have kernels that provide optimal
realization of computational and communication operations. Details pertaining to the nature of
the user data are unlikely to make it to this level. Implicit in this approach is a distinction among
several kinds of adaptivity. First of all, there is static adaptivity, where adaptation happens
during a one-time installation phase. Contrasting with this type of adaptivity is dynamic
adaptivity, where at run-time the nature of the problem and environment are taken into account.
Orthogonal to this dichotomy is the distinction of adapting to the user data or the computational
platform (e.g., memory hierarchy, communication latency/bandwidth or failure modes). We
stress the obvious point that, in order to adapt to user data, a software system needs software that

October 2004 FY05 LACSI SOW 12

engages in discovery of properties of the input. Oftentimes, such discovery can only be done
approximately and based on heuristics, rather than on an exact determination of numerical
properties.

Using the above framework we will investigate the use of Matlab as a front-end for computing
on a cluster.

We propose to conduct research on the topics described in this section and to use the results of
this effort to construct at least one retargetable application of interest to DOE and the ASC
program.

FY05 Tasks:
• Feature Detector. This component collects timing data and examines it for special

features. It may interpolate to fill in gaps or request additional timings to enhance
complicated parts of timing curves. (Quarter 1)

• Investigate search space optimization and automatic search space generation; expand to
heterogeneous clusters. (Quarter 2)

• Develop and implement UHFFT-style code generation and optimization for a limited set
of multi-grid methods to be chosen in collaboration with LANL staff for maximum
benefit to the ASC program within given resource constraints. (Quarter 2)

• Implement ATLAS-style tuning to sparse linear algebra and cluster numerical library.
(Quarter 3)

• Incorporate optimizations into targeted applications; cultivate second round of
applications for optimization. (Quarter 4)

October 2004 FY05 LACSI SOW 13

1.2. Systems
Investigators: Rob Fowler, Patrick Bridges, Alan Cox, Jack Dongarra, Kevin Gamiel,
Arthur Maccabe, John Mellor-Crummey, Dan Reed, Scott Rixner

The Systems sub-area encompasses research in operating systems and closely allied areas as
applied to high performance computing at LANL, specifically within the ASC program. We
focus on research problems that will be critical to the program in a multi-year window beginning
in FY05. In addition to the needs of ASC, the scope of this discussion is further constrained by
the interests and abilities of the researchers, research and development programs funded by other
sources at the participating institutions, and the LACSI funding level for the work.

Research issues in Systems are organized into two main areas. First, “networking/messaging”
refers to problems specifically related to communication research, spanning low-level network
architecture to high-level messaging and parallel I/O. Second, “clustering” encompasses
research in software for effective integration of nodes, communication, storage and tools into
scalable, high-performance systems.

By the end of FY05, we expect to see dramatic improvements in the raw capabilities of
networking hardware and these improvements will become available in commodity products in
the succeeding years. Initially, the commercial and industrial emphasis will be on the use of this
hardware in network infrastructures (backbones) and in commercial servers. Our challenge is to
integrate these technologies into system area networks in new generations of clusters for
scientific computing. Software layers must evolve to leverage new hardware to realize better
network performance, with lower system overheads, to maintain and enhance the reliability of
message passing, and to implement new standards in communication to make systems more
useful.

Cluster technology, whether vendor-integrated, user-built Beowulf’s, or ad hoc aggregations of
workstations, have had a huge impact on parallel computing. Because they are effective on
many (not all) high-end applications, they have become the backbone that provides capacity
computing to LANL, DOE, and the nation.

In recent years, however, it has become apparent that we need a new generation of clusters to
improve productivity. Conventional clusters are labor intensive to set up, administer, maintain,
and upgrade; in many organizations much of the expense of these activities is invisible because
they are spread across staff other than designated system administrators. Better approaches to
system integration and system software are needed. Efficiency and manageability will improve
the economics of small to moderate scale systems for capacity computing, but they are
absolutely necessary in order to build and run scalable capability systems.

A promising approach to dealing with this issue is the single system image (SSI) model of
clusters. Initially under LACSI support, later from DOE Office of Science, the Cluster Research
Lab in CCS-1 pioneered the Clustermatic SSI software package. While Clustermatic has
evolved enough to be useful in production systems, there is still a considerable amount of work
to do. This work on the next generation of Clustermatic spans a spectrum from speculative
research to “nuts-and-bolts” development work.

October 2004 FY05 LACSI SOW 14

Because of the breadth and scale of “next generation Clustermatic”, the academic partners are
committed to being engaged in this effort. It is therefore important that Clustermatic testbed
systems be placed at each of the academic institutions to expose the academic community to the
issues (research, development, and operational) of building and using SSI systems. In addition,
placing systems at each of the academic institutions will ensure that software efforts are
consistent with mainstream Clustermatic development. Rice, the University of New Mexico, and
the University of North Carolina acquired such testbeds during FY04.

1.2.1. Efficient, Portable, and Scalable Support for MPI Messaging

Investigators: Scott Rixner, Alan Cox

LANL Contacts: Ron Minnich, Rich Graham

The goals of this research are to investigate the performance tradeoffs of using TCP over
Ethernet in cluster computing and to deploy the results of this work on clusters compatible with
those in use at LANL. Specialized networks, such as Quadrics and Myrinet, are typically used in
cluster computing because they offer higher bandwidth and lower latency than traditional
commodity networks. However, raw Gigabit Ethernet is competitive in terms of bandwidth and
latency, and it is especially attractive when cost is considered. The drawbacks of Ethernet
typically arise because of the way that it is used both by the operating system and the MPI
library. With specialized networks, protocol processing is usually handled directly in the MPI
library. By doing so, the transport protocol can be tailored to the cluster computing domain by
reducing latency, and copying using such techniques as remote DMA. However, these
specialized protocols are difficult to develop and improve, and make it difficult to take advantage
of many of the features provided by modern operating systems for networking and event
management.

In TCP implementations, protocol processing is handled by the operating system, which can be
much more efficient than a user-level library. The techniques used in the network stack are
mature and are highly optimized for all networking applications. Being in the operating system,
all applications benefit from the performance enhancements. Furthermore, Ethernet is clearly
less expensive than specialized networks and TCP provides reliability and easy portability across
systems. Network servers have been able to achieve extremely high performance levels with
TCP, using scalable event notification systems, such as /dev/epoll in Linux, zero-copy I/O, and
asynchronous I/O. We have shown that implementing the LA-MPI library with an event-driven
messaging thread, which is a well-known technique in the network server domain, can make
TCP over Gigabit Ethernet competitive with Myrinet networks with similar raw bandwidth.

We will build on this work and show that other general optimizations to TCP, including zero-
copy I/O and TCP segmentation offload, will further improve the performance of our event-
driven OpenMPI (previously LA-MPI) library. Memory management within the operating
system’s network stack can also be a significant bottleneck. We intend to study and improve the
memory management within the stack to streamline networking performance. These changes are
a combination of improvements to the operating system’s network stack and the implementation
of the MPI library itself, but are mostly applicable to all network communication, not just MPI
messaging, making them valuable beyond the supercomputing domain.

October 2004 FY05 LACSI SOW 15

FY05 Tasks:
• Publish a comparison of OpenMPI using our event-driven messaging techniques on TCP

over Gigabit Ethernet with OpenMPI using Myrinet. (Quarter 1)
• Demonstrate deployable improvements to the event-driven OpenMPI implementation

using techniques to accelerate TCP, mainly including TCP segmentation offload and
improved memory management. (Quarter 4)

Long Term Task:
• Eliminate bottlenecks in the TCP over Ethernet MPI implementation using a combination

of advanced OS support and programmable network interfaces. Specifically, streamline
the use of TCP over Ethernet for cluster computing and eliminate copying on both
message sends and receives.

1.2.2. Operating System Issues Related to Scalability

Investigators: Arthur B. Maccabe, Patrick G. Bridges

LANL Collaborators: Ron Minnich, Rich Graham

Work at UNM is focused on low-level performance issues associated with communication and
host operating systems. These activities support work at LANL on Clustermatic and OpenMPI
(LA-MPI). Clustermatic and OpenMPI are the base-level infrastructure for LANL's ASC codes.
Recent work at CCS-3 has shown that system software performance can have a large impact on
ASC application performance. Our work is attempting to quantify these impacts and explore the
design space of possible solutions to these performance problems in collaboration with
researchers in CCS-1.

1.2.2.1. Scalability of TCP

Our primary focus in this work is to identify and address limits to scalability in these protocols.
The need to manage connection state is perhaps the single biggest factor limiting the scalability
of TCP. This is especially true when protocol processing is offloaded to a network interface with
limited resources. We have developed and refined methods to determine the actual amount of
system memory used per open TCP connection. Using these methods, we have demonstrated
that memory usage will become a bottleneck to TCP performance in the future.

We are in the process of defining and implementing a connection-less TCP that allows the user
(and eventually the system itself) to deactivate a socket when it is not being used. Deactivation
removes the heavyweight socket and replaces it with a timewait structure that is nearly eight
times smaller. This should enable us to support tens to hundreds of thousands of TCP
connections, most of which are inactive; while a smaller, working set of active connections are
fully instantiated. We will measure the costs associated with dynamic activation and
deactivation of sockets. This involves defining the appropriate metrics (e.g., round-trip time,
congestion window size, slow-start threshold) related to reactivation, cached metrics during
deactivation, static metrics and shared metrics across connections (bundling). We are also
exploring methods for automatically deactivating sockets when they are not part of the “working
set'” for a process and automatically re-activating them as they are needed.

October 2004 FY05 LACSI SOW 16

FY05 Tasks:
• Demonstration of automatic deactivation and re-activation of TCP sockets, including

performance metrics. (Quarter 1)
• Perform ns-2 simulation of “connection-less” TCP. (Quarter 2)
• Identification of methods for automatic deactivation and re-activation of sockets.

(Quarter 3)
• Evaluation of automatic deactivation and re-activation methods. (Quarter 4)

1.2.2.2. Application Impact of Fault-handling Placement

Message-passing systems such as MPI have to handle possible hardware faults in message
passing, including (primarily) network packet losses, but also possibly including packet data
corruption by either the network itself or the host hardware. Message-passing systems can handle
such network faults either at a low-level, such as in kernel network protocols, or in user libraries
and applications. Both approaches have their advantages, with low-level fault handling
potentially offering lower overhead and high-level fault handling providing complete end-to-end
reliability.

Preliminary studies at UNM have shown that the actual cost/benefit tradeoffs in these decisions
are complex; the costs of allowing for user-level end-to-end reliability in LA-MPI/OpenMPI, for
example, may be higher than initially expected even when this functionality is not needed. In
addition, the performance benefits and reliability costs provided by fault handling in low-level
networking protocols still need to be accurately quantified.

In FY2005, UNM will continue to work with Rich Graham in CCS-1 to study the impact of
kernel-level and library-level fault handling in OpenMPI and LA-MPI. By quantifying the
performance impact and potential reliability risks of fault-handling placement, we hope to aid
LANL in improving both the reliability and performance of OpenMPI and LA-MPI in supporting
ASC applications, as well as to help direct future networking and operating systems research at
UNM.

FY05 Tasks:
• Port native Ethernet path to OpenMPI. (Quarter 1)
• Quantification of the costs of the reliability portion of LA-MPI/OpenMPI when the

reliability protocol elements are disabled. (Quarter 2)
• Evaluation of the user-level visible bit-error rates on an Infiniband cluster. (Quarter 3)
• Design and initial prototyping of a framework for moving protocol \ fault-handling

services between user-level, kernel-level, and potentially programmable NICs. (Quarter
4)

1.2.2.3. Infiniband Testbed

Infiniband will be an important, if not the preferred, interconnect for future systems based on
commodity components. As such, the UNM group is starting to look at the implications of
Infiniband as an interconnect. The potential for very high bandwidth, 40 GB/second, in the near
future is of particular interest. In the past, the introduction of 1 Gb/second Ethernet led to major
changes in operating system structure, including: zero-copy structures and OS-bypass. We

October 2004 FY05 LACSI SOW 17

anticipate that the increase to 40 GB/second will lead to similar changes in OS structures. In this
context, we are working with Ron Minnich from CCS-1 to design a networking testbed that will
allow us to experiment with a network interface that has a very powerful processor.

FY05 Tasks:
• Design of network testbed with powerful NIC processors. (Quarter 1)
• Identification of OS issues to explore using the testbed. (Quarter 2)
• Implementation of network testbed. (Quarter 3)
• Initial performance study using the testbed. (Quarter 4)

1.2.3. OpenMPI

Investigator: Jack Dongarra

OpenMPI is a community version of MPI. Each of the core contributors is the developer of an
existing production-quality implementation of the Message Passing Interface (MPI) standard—
FT-MPI (UTK), LA-MPI (LANL) and LAM/MPI (IU)—which offer various approaches to data
and process fault tolerance in addition to high-performance communication. The OpenMPI
project is developing a highly configurable and extensible runtime environment— or
middleware—to support robust parallel computation on systems ranging from small mission-
critical and embedded systems to future petascale supercomputers. OpenMPI has a light-weight
component architecture that allows for on the fly loading of component modules and run-time
selection of features (including network device, OS, and resource management support),
enabling the middleware to be highly adaptable, both statically to accommodate a wide variety of
system types, and dynamically in response to rapidly changing heterogeneous environments. The
architecture also provides an ideal framework for adding support for experimental or innovative
devices. Project OpenMPI's initial goal is to provide a framework for a new high-quality
implementation of MPI Version 2 with high levels of communication performance, scalability to
hundreds of thousands of processes, and data and process fault tolerance. The first release of
open-MPI is scheduled for November 2004. OpenMPI was designed, however, to be the
foundation of more complete runtime environment than a simple message-passing library. A
central goal of OpenMPI is to enable effective fault management (an essential requirement for
scalable computers). Middleware such as OpenMPI is uniquely positioned to coordinate and
broker the tasks of fault prediction, detection, recovery and reconfiguration. We do not propose
to provide a fully automatic or “canned” solution to fault management, but rather to provide a
consistent and common APIs so that applications can discover, characterize, and respond
appropriately to faults.

The low-level communication layer of OpenMPI is designed with high-performance in mind,
providing low latency, and scalable high bandwidth through the striping of message fragments
across multiple network devices, with optional end-to-end data integrity through a lightweight
checksum/retransmission protocol. The design is structured in such a way that all or part of the
communication protocol may be offloaded to network-device processors on architectures where
this is beneficial. Finally, OpenMPI is highly portable, conforming to ISO C and POSIX
standards throughout. This enables us to target a variety of operating systems, including novel
choices such as Plan 9 and realtime operating systems (RTOSs).

October 2004 FY05 LACSI SOW 18

FY05 Tasks:
• Complete the Beta release Open MPI Release at SC, Pittsburgh USA November 2004.

(Quarter 1)
• Produce a report on OPEN-MPI in Heterogeneous Network Environment. Implement

collective communication devices based on various flavors/algorithms layered on point-
to-point. (Quarter 2)

• Generate a first implementation of Data Fault Tolerance (expand on work LA-MPI).
(Quarter 3)

• Investigate and produce a report on various collective communication optimizations.
(Quarter 4)

• Implement an initial Process Fault Tolerance (expand on work FT-MPI). (Quartet 4)
• Implement collective communication devices based on various flavors/algorithms via

shared and distributed memory. (Quarter 4)

1.2.4. Highly Scalable Fault Tolerance

Investigators: Dan Reed, Kevin Gamiel

As supercomputers scale to tens of thousands nodes, reliability and availability become
increasingly critical. Both experimentation and theory have shown that the large component
counts in very large-scale systems mean hardware faults are more likely to occur, especially for
long-running jobs. The most popular parallel programming paradigm, MPI, has little support for
reliability (i.e., when a node fails, all MPI processes are killed, and the user loses all computation
since the last checkpoint). In addition, disk-based checkpointing requires high bandwidth I/O
systems to record checkpoints. The collaborative OpenMPI effort promises one possible solution
to application-mediated recovery.

To complement this effort, we will build on and expand development of tools for real-time
monitoring of system failure indicators (e.g., temperature, soft memory errors and disk retries),
tied to Clustermatic and other scalable cluster infrastructures. These tools will include
mechanisms to estimate node failure probabilities, as a basis for fault tolerance techniques. We
will develop and expand “performability” models that combine both fault-tolerance and
performance for systems containing thousands of nodes. These models will include total time to
solution as a function of failure modes and probabilities.

The modeling will be complemented by an experimental harness in which developers of scalable
fault-tolerant applications will be able to test their codes by selecting special batch queues with
controls for likely failure probabilities and modes. The latter will rely on a set of fault injection
tools that can assess the susceptibility of large-scale applications to transient memory, network
interface card (NIC) or storage errors.

Our goal is to estimate node failure probabilities and introduce enough redundancy to enable
recovery. This approach complements disk-based checkpointing schemes to recover from
failures between disk checkpoints. We envision it is a low overhead checkpoint alternative that
can be performed much more often than disk checkpointing, triggered either periodically or via
system measurements. Finally, we expect this approach to include intelligent learning and
adaptation. By monitoring and analyzing failure modes, the system can estimate the requirements

October 2004 FY05 LACSI SOW 19

adaptation to achieve a specified reliability. This will enable smoothly balancing performance
and reliability.

In addition to these issues, fault tolerance data collection must be scalable and integrated with
low overhead performance measurement systems. We will investigate integrated, sample-based
measurement schemes that can collect failure and performance data from systems containing
thousands or tens of thousands of nodes.

We will also work with the OpenMPI effort to integrate these predictive capabilities with newly
developed MPI fault tolerance mechanisms, with extensions to adaptively choose checkpoint
frequencies (either disk or memory) based on predictive failure probabilities. Our goal is an
adaptive MPI system that can estimate and configure the degree of redundancy and disk or
memory checkpointing needed to ensure reliable computation.

FY05 Tasks:
• Failure mode instrumentation and analysis toolkit development and extension. (Quarter

2)
• Integrated performability measurement tools suitable for very large systems. (Quarter 3)
• Adaptive checkpoint frequency selection. (Quarter 3)
• Semi-automated batch queue selection based on failure modes. (Quarter 4)

1.2.5. Clustermatic Performance Instrumentation

Investigators: Rob Fowler, Patrick Bridges, John Mellor-Crummey

Application performance engineering requires a performance instrumentation and analysis
infrastructure that is robust and scalable while providing the analysis capabilities needed by
developers of both system and application code. There is a demand for instrumentation of
processor performance within an application process and across all code running on a node.
While this may be sufficient for measuring compute-bound applications, operating system
operations play a vital role in the performance of applications that communicate with the outside
world, including messaging in parallel applications and any interaction with I/O subsystems.
Measuring these costs will require adding instrumentation to the operating system kernel and to
the specific device drivers that contribute to the costs.

It will be crucial that the performance instrumentation infrastructure be scalable and impose low
enough overheads that it can be used to measure production runs on large systems.

1.2.5.1. Performance Counter Profiling

HPCToolkit from Rice runs on current Clustermatic systems by layering itself on top of PAPI
from Tennessee. One problem with this approach is that it allows one to look at internal
performance of an application, but it does not provide a system-wide view that captures all
phenomena relevant to performance. We will investigate adding such pervasive performance
monitoring and analysis infrastructure into Clustermatic systems. The approach taken will be to
begin with the oprofil software and extend and modify it to work on Clustermatic systems. This
work is coupled to the activities described in Section 4.1, “Application and System
Performance.”

October 2004 FY05 LACSI SOW 20

FY05 Tasks (Rice):
• Integrate a pervasive performance instrumentation system such as oprofil with

Clustermatic and layer HPCToolkit on top. (Quarter 2).
• Deploy instrumentation and analysis at LANL. Hold a workshop on the use of the

extended tool set. (Quarter 4)

1.2.5.2. Fine-grained monitoring of System Software Costs

General operating system costs are becoming increasing impediments to ASC application
performance on large-scale machines. Recent studies at CCS-3, for example, have shown that
operating system effects in the SAGE ASC code can cause up to a 50% performance penalty on
large-scale systems such as ASCI-Q. The current solution to this problem is to dedicate
approximately 12.5% of ASCI-Q to operating system services to OS interference issues. While
this approach does mitigate the problem, it comes at making a non-trivial portion of the ASCI-Q
system unavailable to applications.

To address these issues, UNM is working on novel approaches to measuring operating system
and message-passing costs in large-scale systems that are central to ASC's mission. The first part
of this research consists of modifying the Linux kernel to monitor and report the operating
system costs associated with each network transmission and reception on a per-request basis. By
augmenting the Linux kernel with per-request monitoring facilities, we aim to quantify the exact
operating system costs that cause operating system interference performance effects similar to
those measured at CCS-3. These per-request monitoring facilities then can be used to guide later
modifications of Linux to increase message-passing performance, and integrated with more
comprehensive system monitoring facilities.

One such comprehensive system monitoring approach is the focus of UNM’s other LACSI
research on monitoring. This approach, which we term message-centric monitoring, seeks to
extend this approach to the entire system and to measure the complete hardware, operating
system, and communication costs associated with ASC message-passing codes. Instead of
examining the performance of individual requests on a host-by-host basis, our message-centric
profiling approach associates performance data with the data in MPI messages as this data
propagates across the system, is received by one host, processed by an application, and sent to
another host. The overall goal is to have the performance data associated with a message
encompass the entire diameter of the computation required to generate it, with the emphasis on
profiling message-passing and operating system costs.

FY05 Tasks (UNM):
• General framework for collecting per-request performance data in Linux on both network

and disk requests. (Quarter 1)
• Evaluation of message-centric monitoring in LAMPI on medium and large-scale

applications. (Quarter 2)
• Integration of per-request performance monitoring with message-centric monitoring.

(Quarter 3)

October 2004 FY05 LACSI SOW 21

• Evaluation of the feasibility of integrating per-request and message-centric monitoring
information into HPCToolkit. (Quarter 4)

October 2004 FY05 LACSI SOW 22

1.3. Computational Science
Investigators: Yuri Kuznetsov, Mike Fagan

The Computational Science effort focuses on the development, analysis, and verification and
validation (V&V) of numerical solution techniques for physical models embodied within large-
scale multi-physics simulation tools designed to address today’s leading problems in science and
engineering. Key applications currently include the predictive simulation of weapons
manufacturing and performance as supported by the DOE Advanced Simulation and Computing
(ASC) Program and global climate modeling as supported by the DOE Scientific Discovery
Through Advanced Computing (SciDAC) Program. The computational science effort can be
divided into three principal research thrust areas: algorithms and models for specific physical
phenomena of interest, numerical methods for the algorithmic coupling of these physical
phenomena, and metrics for correctness and robustness of these models and algorithms. The
thrust areas are:

1. Numerical Solution of Partial Differential Equations for Continuum Dynamics, Energy

Transport, and Materials Science;
2. Linear and Nonlinear Solvers; and
3. Methodologies for V&V, Sensitivity, and Uncertainty Quantification.

A key product of this effort, both in the long and short term, is verified and validated software
components constructed with defensible (demonstrable) software quality engineering practices.
These components must instantiate robust and accurate solution techniques for the physical
models required by the multi-physics simulation tools. The computational science effort devoted
to “multi-physics coupling” algorithm research is necessary for the faithful simulation of
multiple, simultaneously-occurring physical phenomena.

Long-term goals. Ensuring computational science follows the fundamental principles of the
scientific method requires long term investigation of numerical methods and algorithms and
careful software development. For example, a physicist or engineering analyst using these
simulation tools should be able to generate high fidelity three-dimensional simulations, attain
similar answers with two different numerical techniques, and be assured that each technique has
been verified and validated. Because the transformation of physical principles into software can
take many different paths, long-term research focuses on the investigation of new, possibly high-
risk, methods along with new ideas for the improvement of classical methods that are parallel
and scalable.

Experience shows investigation of new methods must be built upon the foundation of good
software quality engineering. Unit-testing and component-based designs for even one-
dimensional tests are necessary to assess the impact of this long-term research on next-
generation simulation tools.

Long-term goals of the computational sciences effort include:
• Understanding the physics and mathematics of the phenomena to be simulated so that

improved numerical methods can be devised that are both robust and accurate;

October 2004 FY05 LACSI SOW 23

• Developing new algorithms for the resulting physical models that possess good single
processor performance as well as being parallel and scalable;

• Instantiating these algorithms into component-based software as guided by sound software
quality engineering practices. Unit-testing is of primary importance compared to reusability;

• Developing improved and automated methodologies for the verification of the algorithms
and the software and the validation of the models; and

• Devising strategies for successful team software development of large-scale simulation tools.
Short Term Plans

With the LACSI funds currently projected to be available in FY05, we propose to fund the
projects described in the following sections. The first project, “Code-based Sensitivity
Analysis,” is in the “Methodologies for V&V, Sensitivity, and Uncertainty Quantification” thrust
area. The second project, “Adaptive Numerical Methods for Diffusion and Transport Equations
in Heterogeneous Media on Distorted Polyhedral Meshes,” is in the “Numerical Solution of
Partial Differential Equations for Continuum Dynamics, Energy Transport, and Materials
Science” thrust area.

1.3.1. Code-Based Sensitivity Analysis

Investigator: Mike Fagan

LANL Collaborators: Ken Hanson (CCS-2), Jim Sicilian (CCS-2), John Turner (CCS-2),
Ralph Nelson (X4)

Predictive computational models used for stockpile stewardship studies require sophisticated
models simulated on the world’s largest computers. These models are complex; hence advanced
verification (“solving the equations right”) and validation (“solving the right equations”)
methodologies are needed to assess their accuracy and predictive capability. In every major ASC
simulation code, complex subsystems interact in complex ways to form cohesive computer
programs that predict important physical processes. Sophisticated, component-based software
enables analysts to unit test and verify the codes even if there are major improvements and
changes to the subsystems of the code. Finally, even with verified numerical algorithms (in the
physics and software sense) and validated physical models, the uncertainty of the
model/algorithm and its sensitivity to change must be better understood.

A priority of LANL’s mission is to validate and verify (“V & V”) the complex computer
programs used to model equally complex physical processes. One of the major techniques
employed in the verification and validation process is sensitivity calculation. Consequently, the
aim of the code-based sensitivity analysis project is to develop methods for accurately and
efficiently computing sensitivities of complex scientific simulation programs. Three projects at
LANL are the principal targets for code-based sensitivity analysis over the short term: the
Telluride Project, the Shavano Project, and the Marmot Project.

FY05 Tasks:
• Continue to develop Adifor 90 algorithms and general AD infrastructure. (Ongoing)
• Continue to assist LANL in the application of Adifor 77 codes of interest. (Ongoing)
• Develop software tools for validating derivative code. (Ongoing)

October 2004 FY05 LACSI SOW 24

• Write a technical report about the optimal step size for verifying derivatives. (Quarter 2)
• Demonstrate prototype tool for automatic differentiation of object code. (Quarter 3)
• Demonstrate ability to apply Adifor 90 to differentiate a substantial part of the Truchas

code. (Quarter 4)
• Initiate development of Infrastructure for augmentation of C/C++/Java codes. (Quarter 4)

1.3.2. Adaptive Numerical Methods for Diffusion and Transport Equations in
Heterogeneous Media on Distorted Polyhedral Meshes

Investigator: Yuri Kuznetsov

LANL Collaborators: J. Morel (CCS-2), G. Olson (CCS-4), M. Shashkov (T-7)

Efficient numerical methods for the diffusion and radiation transport equations in highly
heterogeneous media on general distorted polyhedralmeshes is an important topic for scientists
and engineers working in computer simulation of complex physical phenomena. This statement
is very relevant to several research groups at LANL, for instance, to the T-7 and CCS-4 groups,
and at UH.

The project is based on the results of very successful cooperation between researchers at LANL
and at UH. In 2002-2003, Yu. Kuznetsov conceived of a fundamentally new approach for
solving the diffusion equations on general polygonal and polyhedral meshes by the mixed finite
element method. In 2003-2004, the idea of this method was applied by researchers from LANL
(M. Shashkov, J. Morel, and K. Lipnikov) and UH (Yu. Kuznetsov) to design new accurate and
physically consistent mimetic discretizations based on the support operator method for the
diffusion equations on polygonal meshes. The resulting method represents a genuine
breakthrough in the numerical solution of the diffusion equations on arbitrary polygonal meshes
including locally refined (AMR) and nonmatching ones. The method is slated for
implementation in certain ASC projects at LANL. Extension of the method to polyhedral
meshes with application to 3D diffusion equations has been done recently (FY 2004).

In this project (FY 2005), we plan to continue joint research on development and investigation of
the proposed methods as well as on implementation aspects of the method and LANL relevant
applications.

Long term goal: The major long term goal of the project is to develop, investigate and evaluate
on the test problems relevant to LANL applications new adaptive mimetic compatible
discretizations and efficient parallel multilevel preconditioners/solver for the diffusion and
radiation transport equations in heterogeneous media on strongly distorted polyhedral meshes.

FY05 Tasks:
• To implement the proposed polyhedral discretization method and to evaluate its accuracy

and efficiency on 3D test problems relevant to ASC applications. To deliver a technical
report with description of test problems and results of numerical experiments.

• To investigate convergence properties of the proposed methods and to derive a posteriori
error estimation for polygonal discretizations of the diffusion equations.

October 2004 FY05 LACSI SOW 25

• To develop an AMR methodology based on a posteriori error estimator for the polygonal
discretizations of the diffusion equations and to evaluate it on test problems relevant to
ASC applications. To deliver a report with results of numerical experiments.

• To develop, investigate and evaluate on selected test problems the new multilevel
preconditioner based on macro-element coarsening in the space of the Lagrange
multipliers. To deliver a report with description of preconditioners to be developed and
results of numerical experiments.

October 2004 FY05 LACSI SOW 26

1.4. Application and System Performance
Investigators: John Mellor-Crummey, Keith Cooper, Jack Dongarra, Robert Fowler,
Guohua Jin, Dan Reed, Linda Torczon

Building scientific applications that can effectively exploit extreme-scale parallel systems has
proven incredibly difficult. The sheer level of parallelism in such systems poses a formidable
challenge to achieving scalable performance. In addition, the architectural complexity of
extreme-scale systems makes it hard to write programs that can fully exploit their capabilities. In
today’s extreme-scale systems, complex processors, deep memory hierarchies and heterogeneous
interconnects require careful scheduling of an application’s operations, data accesses and
communication to enable the application to achieve a significant fraction of a system’s potential
performance. Furthermore, the large number of components in extreme-scale parallel systems
makes component failure inevitable; therefore, long-running applications must be resilient to
hardware faults or risk being unable to run to completion.

The principal goals of the application and system performance research thrust are
1. understanding application and system performance on present-day extreme-scale

architectures through the development and application of technologies for measurement
and modeling of program and system behavior,

2. devising software strategies to ameliorate application performance bottlenecks on today’s
architectures,

3. modeling the behavior of applications to understand factors affecting their scalability on
future generations of extreme-scale systems, and

4. investigating software technology that will enable higher performance on next-
generation, extreme-scale parallel systems.

A broad spectrum of issues affects application performance, including operating system activity,
load imbalance, serialization, underutilization of processor functional units, data copying, poor
temporal and spatial locality of data accesses, exposed communication latency, high
communication frequency and large communication bandwidth requirements. A quantitative
assessment of factors limiting application performance on current-generation architectures will
help focus long-term research on software and hardware technologies that hold the most promise
for improving application performance and scalability on future systems. A multitude of
challenging problems must be solved to understand how to best implement scientific applications
so that they can achieve scalable high performance on extreme-scale parallel systems.

As part of this research thrust, the project team will explore application performance on many
fronts and undertake a program of research that aims to develop technologies to support
measuring, modeling, understanding, tuning and steering application performance on current and
future generations of extreme-scale parallel architectures. This work will address all aspects of
performance and reliability spanning system architecture, network and applications. Our
investigation will include work on both scalability and node performance. The findings from this
research, as well as tools and software infrastructure developed as products of this effort, are
expected to benefit all ASC application teams by providing them with more efficient
programming models, technology for compiler-assisted tuning of applications, better
performance instrumentation and diagnostic capabilities, insight into the performance and

October 2004 FY05 LACSI SOW 27

scaling of applications and systems through modeling, improved algorithm-architecture
mapping, and better performing extreme-scale parallel architectures.

1.4.1. Modeling of Application and System Performance

Investigators: John Mellor-Crummey, Robert Fowler

LANL Collaborator: Adolphy Hoisie

Performance models are an important tool for gaining insight into applications and systems.
They can be used for scalability analysis on both existing and proposed future architectures, in
procurement to compare proposed alternatives, in software development to ascertain the
performance impact of code re-configuration prior to implementation, and in real-time to steer
the processing of code to increase processing efficiency. Accurate models are useful for guiding
architecture design. The modeling of high performance software and hardware systems is highly
complex, requiring the encapsulation of key processing structures and characteristics. This is a
direct result of the performance space being multi-dimensional and highly non-linear in any of its
dimensions.

Research in this area at LANL and Rice will span a wide range of topics. At Rice, the focus of
research will be on designing, building and evaluating semi-automatic tools for synthesizing
models and model components, as well as exploring how to integrate model components
synthesized automatically into hand-crafted model frameworks. We will use the tools that we
build to synthesize prototype models for target applications and then evaluate how effectively
our semi-automatically generated models predict application behavior on a set of target systems.

FY05 Tasks:
• Refine capabilities for modeling and prediction of an application’s memory hierarchy

performance for a range of applications, architectures, and problem sizes. (Quarter 1)
• Refine capabilities for combining memory hierarchy and computation predictions to

improve prediction accuracy; evaluate relative accuracy of cross-architecture predictions
of node performance for multiple architectures. (Quarter 2)

• Explore how to extend capabilities for predicting node performance of sequential
programs to predict performance of parallel programs. Explore strategies for integrating
Rice’s semi-automatically generated node performance predictions with LANL’s whole
system models. (Quarters 3-4)

1.4.2. Better Tools for Measurement and Analysis of Application Performance

Investigators: Robert Fowler, John Mellor-Crummey, Dan Reed

On terascale systems, performance problems are varied and complex. Hence, a wide range of
performance evaluation methods must be supported. The appropriate data collection strategy
depends on the aspect of program performance under study. Key strategies for gathering
performance data include statistical sampling of program events, inserting instrumentation into
the program via source code transformations, link time rewriting of object code, binary
modification before or during execution, or program state modification during execution.

October 2004 FY05 LACSI SOW 28

Capturing traces of program events such as message communication helps characterize the
temporal dynamics of application performance; however, the scale of these systems implies that
a large volume of performance data must be collected and digested. Improved data collection
strategies are needed for collecting more useful information and reducing the volume of
information that must be collected. Statistical sampling provides a formal basis to achieve
desired estimation accuracy under a certain measurement cost. We will investigate the feasibility
of using statistical sampling and population dynamics techniques to characterize performance on
large systems. This approach will enable tunable control of measurement accuracy and
instrumentation overhead. Concurrently, we will explore application of these techniques to the
temporal domain, with a goal of bounding temporal performance trajectories.

Research problems to be addressed include determining the appropriate level for implementing
different instrumentation and measurement strategies, how to support a modular and extensible
framework for performance evaluation, as well as the appropriate compromise between
instrumentation cost, the level of detail of measurements, and the volume of data to be gathered.

Current tools for analysis of application performance on extreme-scale systems suffer from
numerous shortcomings. Typically, they provide a myopic view of performance emphasizing
descriptive rather than prescriptive data (i.e., what happened rather than guides to improvement),
and they do not support effective analysis and presentation of data for extreme-scale systems. To
help users cope with the overwhelming volume of information about application behavior on
extreme-scale systems, more sophisticated analysis strategies are needed for automatically
identifying and isolating key phenomena of interest, distilling and presenting application
performance data in ways that provide insight into performance bottlenecks, and providing
application developers with guidance about where and how their programs can be improved.

Comparing profiles based on different events, computing derived metrics (e.g., event ratios), and
correlating profile data with routines, loops and statements in application code can provide
application developers with insight into performance problems. However, better statistical
techniques are needed for analyzing performance data and for understanding the causes and
effects of differences among process performance. Instead of modeling each system component,
these techniques select a statistically valid subset of the components, and model the members of
that subset in detail. Properties of the subset are used as a basis in estimates for the entire system.
Our research in this area, so far, has focused on system availability. We plan to expand that
scope and apply these techniques to study application performance. The main goal is to evaluate
how well application performance can be characterized and understood, based on a more
efficient data collection scheme.

FY05 Tasks:
• Explore integrating information about dynamic execution context (i.e., call paths) into

HPCToolkit and explore strategies for analyzing and presenting such profiles for large
applications. (Quarters 1-2)

• Develop and demonstrate an analysis package for combining and analyzing HPCToolkit
performance profiles for a large collection of node computations. (Quarters 2-3)

• Explore extensions for improving the effectiveness of the HPCToolkit user interface for
exploring the performance of parallel applications. (Quarter 4)

October 2004 FY05 LACSI SOW 29

• Interact with LANL application researchers to (i) characterize the behavior of their
applications executed on large-scale systems, and (ii) explore opportunities for
performance improvements based on the findings produced by this characterization.
(Ongoing)

• Continue refinement of the PAPI interface for accessing hardware performance counters.
The goal of this effort is to provide a robust implementation of PAPI including features
such as thread safety, counter multiplexing, and counter-driven user callbacks on
important computing platforms. (Ongoing)

• The academic performance analysis team will continue to hold performance tools
workshops at LANL if the applications teams or LANL management believe additional
such workshops would be productive.

1.4.3. Automatic Application Tuning

Investigators: Keith Cooper, Ken Kennedy, John Mellor-Crummey, Linda Torczon

Increased complexity in both applications and architectures has created an environment in which
producing effective code is difficult. The classic software production cycle, in which an
application is compiled once at a high-level of optimization, is no longer sufficient to produce
high-quality executable code. Systems that use run-time adaptation, such as ATLAS, or that
generate code tailored for specific problem instances, such as UHFFT, demonstrate that adaptive
strategies can produce consistently good results. Building tools that incorporate and automate
such adaptation is a major challenge. The goal of this project is to achieve results comparable to
those of ATLAS or UHFFT using automatic techniques—thereby making the benefits of such
adaptation available over a wider range of applications. (This goal stands in contrast to the work
in Section 1.1.3, which aims to generate additional software libraries that implement their own
adaptive behavior. Success in this project will complement success in that project.)

Adaptive Optimization Strategies: Modern compilers use a handful of strategies to improve each
optimization. Typically, they apply the same strategies to all programs. For example, GCC
supports three levels of optimization, –O1, -O2, and –O3, each representing a fixed strategy.
Recent work has shown that program-specific strategies can produce consistently better code;
several studies suggest that the improvements from program-specific strategies range up to 25%
over any fixed strategy.

The problem with program-specific strategies lies in the cost of discovering them. One goal of
this project is to develop cost-effective techniques to discover and apply program-specific
optimization strategies. The work includes strategies for compiler configuration (e.g., both the
set of optimizations to run and an order in which to apply them), for determining command-line
parameter settings (e.g., GCC offers roughly fifty individual flags that can control different
aspects of the individual passes), and for controlling the application of specific optimizations
(e.g., loop blocking or inline substitution).

Performance-based Optimization Strategies: Recent work in performance analysis and
modeling has enabled tools to identify performance bottlenecks in an application. Tools such as
the HPCToolkit can use hardware performance counters to pinpoint both a region and a problem,
as in “this inner loop has excessive L2 cache misses.” Classic optimizing compilers have no way

October 2004 FY05 LACSI SOW 30

to target such problems; in particular, techniques to ameliorate one region’s problem may
exacerbate the problems of another region.

Performance-based optimizations will combine a regional approach to applying a particular
transformation (as opposed to uniform application across an entire procedure) with a feedback-
based steering mechanism that selects transformations and regions based on actual or predicted
performance problems.

Research is needed into a spectrum of technologies to support effective whole program tuning.
This research will include techniques to identify regions of inefficiency and to pinpoint
symptoms of inefficiency (e.g. excessive TLB misses in a particular loop), strategies for
coordinated application of integrated code transformations to ameliorate program bottlenecks,
and search techniques for determining what the next step should be to tune the program based on
the results of tuning attempts thus far.

FY05 Tasks:
• Deliver a prototype tool for automatically tuning whole applications for the x86

architecture based on feedback from empirical performance measurements. The tool will
use the HPCToolkit package for collecting performance measurements and will use a
search strategy to tune transformation parameters such as tile sizes and unroll factors to
direct LoopTool. (Quarter 1)

• Demonstrate applicability of adaptive compilation sequences in compilers other than our
research prototype. We will work within the LLVM system to show the improvements
from optimization choice. (Quarter 2). We will experiment with adaptive compilation
sequences in Microsoft’s new Phoenix compiler infrastructure. (Quarters 3—4, pending
licensing and availability issues)

• Explore adaptive techniques for control of an individual optimization. We will complete
our study of adaptive control of source-to-source inline substitution. (Quarters 2—3). We
will release our prototype adaptive inliner as a standalone tool. (Quarter 4)

• Expand our experiments on compilation-order decisions to include source-level
application properties. We will develop source-level metrics and try to correlate them
with effective compilation sequences. (Quarters 3—4)

1.4.4. Compiler Technology for Exploiting Modern Processors

Investigators: Keith Cooper, Ken Kennedy, John Mellor-Crummey, Linda Torczon

To keep pace with the Moore’s law curve and deliver 60% annual increases in processor
performance, architects have increased the complexity of commodity processors and the memory
systems that surround them. To produce code that achieves a significant fraction of peak
performance on a modern commodity processor (e.g., Pentium, IA-64, Opteron, SPARC, or
MIPS), a compiler must apply a complex series of transformations to the code (optimization) and
then translate the result into the appropriate assembly code (code generation). To create code that
executes efficiently, the compiler must address a number of challenging problems.

1. The code must keep the functional units busy. The optimizer must transform the input
program so that it has enough instruction-level parallelism to sustain the computation rate
as well as an appropriate instruction mix. The code generator must discover a dense

October 2004 FY05 LACSI SOW 31

instruction schedule for the final code—it may need to use different scheduling
algorithms for different points in the code, making the choice on a loop-by-loop or block-
by-block basis.

2. The optimizer must transform the code so that its pattern of memory accesses matches
those of the processor and memory system—adjusting locality with blocking,
prefetching, and (perhaps) streaming. After the optimizer has rewritten the code so that it
can move sufficient data onto the chip in a timely fashion, the code generator must
manage instruction and data placement so that operands are kept in appropriate registers
and, for clustered register-file machines, in the cluster where the operand is consumed.

3. The optimizer and the code generator must work together to make effective use of
processor features such as predicated execution, register windows, register stacks, auto-
increment options, branch-delay slots, and hints to the hardware about locality and branch
targets.

Research on this project is aimed at developing new techniques to address these problems—
techniques suitable for implementation in either open source or commercial compilers, and at
improving the quality of optimization and code generation available in both open source and
commercial compilers for commodity processors used in high-performance computing.

FY05 Tasks:
• Continue our experiment with automatic choice of command-line parameters for IA-64

compilers (both ORC and the Intel compiler). In Quarters 1—2, we will quantify the
potential improvement from parameter setting. In Quarters 3—4, we will package those
results in a tool that automatically finds appropriate, application-specific parameter
settings.

• Investigate the use of dynamic reoptimization to improve performance on scientific
codes. We will use the LLVM framework (support for Pentium, PowerPC, and Sparc,
with Opteron in process) in this work. Release new register allocators for LLVM.
(Quarter 2). Begin development of an advanced scheduler for LLVM. (Quarters 3—4)

• Investigate the use of algebraic reassociation in conjunction with strength reduction to
reduce the number of integer instructions created in critical blocks. We will work with
partners at LANL to identify critical loops that schedule poorly due to instruction mix
(Quarter 1) and develop reassociation strategies to reduce the operation count. (Quarters
2—3)

1.4.5. Application Mapping, Dynamic Adaptation and Steering

Investigators: Dan Reed, Ken Kennedy

As computer systems grow in size and complexity, tool support is needed to facilitate the
efficient mapping of large-scale applications onto these systems. Today, most applications are
mapped to a set of resources at program launch and then run to completion using these resources.
However, large-scale systems built from commodity components are prone to failure and long-
running applications for such systems must sense and respond to component failure.

Intelligent mapping and performance steering offer an opportunity to adjust a running program
for more efficient execution and to adapt to changing resource availability (e.g., due to

October 2004 FY05 LACSI SOW 32

component failures or resource sharing). A challenge is to develop strategies that enable
applications running on ASC-scale systems to monitor their own behavior and reactively adjust
their behavior to optimize performance according to one or more metrics. For this purpose,
performance analysis tools must provide robust performance observation capabilities at all levels
of the system and the ability to map low-level behavior to high-level program constructs. Our
goal is to develop tools and approaches that can help applications achieve high performance even
when system components fail or applications are subject to other system constraints – managing
the challenge of large scale and integration with multiple subsystems. This work will explicitly
target the LANL Clustermatic infrastructure.

Our goal is to develop tools and approaches that can help applications achieve high performance
even when system components fail or applications are subject to other system constraints.
Strategies for automatic performance steering based on performance and fault models offer the
potential to enable long-running programs to repeatedly adjust themselves to changes in the
execution environment – perhaps to opportunistically acquire more resources as they become
available, to rebalance load, or adapt to component failures. Moreover, measurement of
environmental conditions on nodes promises to allow users and schedulers to balance checkpoint
frequency and partition allocation based on failure likelihood.

In addition, validated performance “contracts” among applications, systems, and users that
combine temporal and behavioral reasoning from performance predictions, previous executions,
and compile-time analyses are one promising approach. This work continues to explore the use
of performance contracts to guide the monitoring of application and resource behavior; contracts
will include dynamic performance signatures and techniques for locally (per process) and
globally (per application and per system) evaluating observed behavior relative to that expected.

FY05 Tasks:
• Explore techniques for “performance contracts” (i.e., application and system level

techniques for closed loop performance monitoring and adaptation to approximate fixed
performance levels) for use with Clustermatic. (Quarters 1-3)

• Demonstrate adaptation techniques for multi-attribute system behavior. (Quarter 4)

1.4.6. Compiler Technology for Extreme-scale Systems

Investigators: John Mellor-Crummey, Ken Kennedy, Guohua Jin

Today, MPI is the dominant programming model for writing scalable parallel programs. MPI has
succeeded because it is ubiquitous and it makes it possible to program a wide range of
commodity systems efficiently. However, as a programming model for extreme-scale systems,
MPI has numerous shortcomings. For instance, when using MPI, the programmer must assume
all responsibility for communication performance including choreographing asynchronous
communication and overlapping it with computation. This complicates parallel programming
significantly. Because of the explicit nature of MPI communication, significant compiler
optimization of communication is impractical. Programming abstractions in which
communication is not expressed in such a low-level form are better suited to having compiler
optimization play a significant role in improving parallel performance. Also, when one uses MPI,
only coarse grain communication is efficient; this has a profound impact on the way programs

October 2004 FY05 LACSI SOW 33

are structured. When an architecture supports a global name space and fine-grain low latency
communication, other program organizations can be more efficient.

Global address space programming models are likely to emerge as the simplest to program and
most efficient for emerging systems such as Cray’s Red Storm and future systems that arise out
of DARPA’s HPCS project. SPMD global address space programming models such as Co-array
Fortran (CAF) and Unified Parallel C (UPC) offer promising near-term alternatives to MPI.
Programming in these languages is simpler: one simply reads and writes shared variables. With
communication and synchronization as part of the language, these languages are more amenable
to compiler-directed communication optimization. This offers the potential for having compilers
assist effectively in the development of high performance programs. Research into compiler
optimizations for SPMD programming languages offers the potential of not only simplifying
parallel programming, but also yielding superior performance because compilers are suited for
performing pervasive optimizations that application programmers would not consider employing
manually because of their complexity. Also, because CAF and UPC are based on a shared-
memory programming paradigm, they naturally lead to implementations that avoid copies where
possible; this is important on modern computer systems because copies are costly.

However, global address space languages such as UPC and CAF are relatively immature, as is
compiler technology to support them. Making these languages simple and efficient to use will
require refining language primitives for efficiency and performance portability, developing new
analysis and optimizations for SPMD programs, developing compiler support for tolerating
latency and asynchrony, as well as developing supporting run-time mechanisms

Beyond explicitly parallel SPMD programming models, data-parallel models such as High
Performance Fortran and Cray’s Chapel language offer an even simpler programming paradigm,
but require more sophisticated compilation techniques to yield high performance. Research into
compiler technology to increase the performance and scalability of data-parallel programming
languages as well as broaden their applicability is important if parallel programs are to be
significantly simpler to write in the future. For parallel programming models to succeed, their
use and appeal must extend beyond just extreme-scale machines; therefore, sophisticated
compiler technology is needed for these languages to make them perform well on today’s
relatively loosely-coupled clusters as well as tightly-coupled petascale platforms of the future.

Higher-level data-parallel programming models such as HPF and Chapel pose significant
challenges to compilers. Generating flexible high-performance code that runs effectively on a
parameterized number of processors is a significant problem. We will continue to investigate
analysis and code generation techniques with the aim of having compilers transform complex
programs that use sophisticated algorithms into parallel programs that yield scalable high
performance on a range of parallel systems.

FY05 Tasks:
• Evaluate compiler technology for retargeting IMPACT 3D, an HPF application written

for the Earth Simulator, to microprocessor-based systems. (Quarter 1)
• Explore compiler-based strategies for managing communication buffers in Co-array

Fortran to better support pipelined applications such as Sweep3D. (Quarter 2)
• Design, evaluate and report on analysis and code generation strategies with the aim of

yielding efficient parallel code for sophisticated algorithms such as multigrid. (Quarter 3)

October 2004 FY05 LACSI SOW 34

• Refine algorithms for effectively partitioning computations expressed using a global
memory model in the presence of complex data partitionings and dependence patterns.
Write a paper about the refined partitioning and code generation strategy. (Quarter 3)

1.5. Computer Science Community Interactions
Fostering collaborative relationships between LACSI participants at LANL and at the LACSI
academic sites is a principal LACSI goal. Because LACSI is a collaborative research effort,
effective means of supporting collaborations are important to LACSI’s success. To encourage
collaboration, the LACSI academic institutions support a variety of opportunities for researchers
and students from Los Alamos and the academic partner sites to visit each other, to share ideas,
and to actively collaborate on technical projects. LANL has also hosted speakers from the
LACSI academic sites as part of the ACL Seminar Series. Researchers from the LACSI
academic sites are available to speak in the ACL Seminar Series during the FY05 project year.

In addition to hosting visitors and speakers, the LACSI academic partners in conjunction with
LANL organized and hosted technical workshops and meetings held at LANL during FY04 on
topics related to the LACSI technical vision. Specifically, a performance modeling and
prediction meeting and a Components mini-workshop with the Marmot group at LANL were
held in June 2004. During the FY05 project year, the LACSI academic partners in conjunction
with LANL will organize, host, and otherwise support technical workshops and meetings on
topics related to the LACSI technical vision. For example, plans are underway to hold a
performance modeling and prediction meeting at Rice in October 2004. We are actively seeking
additional funds to support larger meetings on topics relevant to LACSI.

To reach a broader community, LACSI hosts an annual symposium to showcase LACSI results
and to provide a forum for presenting outstanding research results from the national community
in areas overlapping the LACSI technical vision. This is a traditional conference-style meeting
with participation by both LACSI members and scientists from the community at large. The
FY04 LACSI Symposium was held October 27-29, 2003 in Santa Fe, New Mexico. The FY05
LACSI Symposium will be held in Santa Fe, New Mexico, October 12-14, 2004. Details related
to the LACSI symposium are available at http://lacsi.lanl.gov/symposium. In addition, the
LACSI academic partners in conjunction with LANL disseminated information about LACSI
and its research results at Supercomputing 2003 and will disseminate information at
Supercomputing 2004.

Finally, Rice will also coordinate a technical infrastructure between Los Alamos and the
academic partners, enabling web broadcasting of local technical talks, workshops, and the
LACSI Symposium to an off-site audience.

October 2004 FY05 LACSI SOW 35

2. Management and Administration
Andy White (LANL) directs LACSI in conjunction with Ken Kennedy (Rice), who serves as co-
director of LACSI and director of the academic portion of the LACSI effort. Rod Oldhoeft
(LANL) and Linda Torczon (Rice) assist the directors as executive directors. The directors make
significant decisions with the advice of the LACSI Executive Committee (EC), which includes
the site director for each of the six LACSI sites, key LANL personnel, the project directors for
the academic portion of each of the strategic thrusts, and the executive directors. The EC
currently consists of the following members:
• Andy White, Chair, Los Alamos National Laboratory
• Ken Kennedy, co-Chair, Rice University
• Jeff Brown, Los Alamos National Laboratory
• Jack Dongarra, University of Tennessee at Knoxville
• Bill Feiereisen, Los Alamos National Laboratory
• Rob Fowler, Rice University
• Adolfy Hoisie, Los Alamos National Laboratory
• Lennart Johnsson, University of Houston
• Deepak Kapur, University of New Mexico
• Doug Kothe, Los Alamos National Laboratory
• Yuri Kuznetsov, University of Houston
• John Mellor-Crummey, Rice University
• Rod Oldehoeft, Los Alamos National Laboratory
• Dan Reed, University of North Carolina at Chapel Hill
• John Thorp, Los Alamos National Laboratory
• Linda Torczon, Rice University
The EC is responsible for planning and reviewing LACSI activities on a regular basis and
establishing new directions, along with new goals and modified milestones. The EC evaluates
progress based on the quality of the research performed and its relevance to LACSI goals. Based
on the outcomes of its reviews of LACSI research and other LACSI activities, the EC might
identify projects to phase out and propose a collection of projects to be undertaken, along with
goals for those projects. LACSI researchers to lead the new efforts would be identified and work
would be initiated. The resulting work would be evaluated in subsequent reviews.

In March 2002, the EC met with LACSI researchers at LANL to discuss methods of addressing
issues raised in the 2001 LACSI contract review. The group developed a framework to address
long-term strategic thrust areas. Specific objectives were called out as near-term priorities. The
objectives were folded into the framework to form a coherent planning view. A description of the
long-term vision, framework, and objectives is available in a document (LAUR # 02-6613) titled
Priorities and Strategies.

In April 2003, the EC met with senior LANL personnel to revise the framework, priorities, and
strategies established at the planning meeting in 2002 and Priorities and Strategies was revised
to incorporate the results of the April 2003 planning meeting (LAUR # 03-7355). In February
2004, the EC again met with senior LANL personnel to revise the framework, priorities, and

October 2004 FY05 LACSI SOW 36

strategies established in previous planning meetings. Priorities and Strategies is being revised to
reflect the results of the February 2004 planning meeting. Relevance to the LACSI priorities and
strategies outlined in the document continues to be a key evaluation criterion used when the EC
evaluates progress on LACSI projects.

The EC meets by teleconference bi-monthly and communicates regularly by e-mail. The EC
also meets in person at the LACSI Symposium every fall and at the spring planning meeting. In
FY04, LACSI EC meetings were held on October 28, 2003 (Santa Fe, NM) and February 19,
2004 (Houston, TX). In FY05, the LACSI EC meetings will be held on October 13, 2004 (Santa
Fe, NM) and February 7, 2005 (Los Alamos, NM).

2.1. Management of Academic Subcontracts
Rice is the lead site on the contract for all academic partners, with Ken Kennedy serving as
director. Linda Torczon assists him as executive director. Rana Darmara assists him as senior
project administrator. Each academic site has a site director: Ken Kennedy (Rice University),
Lennart Johnsson (University of Houston), Deepak Kapur (University of New Mexico), Dan
Reed (University of North Carolina at Chapel Hill), and Jack Dongarra (University of Tennessee
at Knoxville). Each of the following strategic thrust areas has a project director: Ken Kennedy
(Components), Rob Fowler (Systems), Yuri Kuznetsov (Computational Science), John Mellor-
Crummey (Application and System Performance), and Linda Torczon (Computer Science
Community Interaction). Significant decisions related to the management of the academic
subcontracts are made by the director with the advice of the academic site directors and the
academic project directors.

Due to recent changes in the funding level for the Computational Science research thrust, the
Computational Science research thrust currently does not have an academic project director. An
academic project director will be chosen when the FY05 funding level for the Computational
Science research thrust is finalized. The academic project director will also serve on the LACSI
EC.

The LACSI directors, the LACSI executive directors, and key research and administrative
personnel from LANL and Rice meet monthly by teleconference to handle administrative matters
related to contracts, invoicing, meeting arrangements, reporting requirements, and other
administrative issues that arise.

2.2. Computational Resources
The academic partners will be provided with access to ASC computing platforms at LANL on a
predetermined basis for development and testing. The process will make it possible to allocate a
small cluster of nodes each week and a larger cluster of nodes once a month. It is understood that
dedicated access may be needed for key tests and performance analyses.

To the extent possible, development work will be centered on the Clustermatic testbed systems
being installed at Rice, UNC, and UNM. Access to large Clustermatic systems at LANL may be
required for full-scale tests.

