
© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

the need for a
standardized
performance
monitoring interface

Stéphane Eranian
HP Labs
February 2005
HPCA11, San Francisco, CA - USA

February 13, 2005 2

The situation today
• Hardware situation:

−All processors include PMU, more than just counters
−by nature, PMU is very implementation specific

• Operating system situation:
−All major OS have a specific interface
−Linux is worse: multiple interfaces available, not integrated
−large functionality variations between interfaces

• Monitoring software is diverse:
−needs include counting, sampling, per-thread/system-wide
−used for application tuning, dynamic optimization

• portability of tools affected by OS interface variations
−user level toolkits (e.g., PAPI) cannot hide everything

February 13, 2005 3

why a standard interface?
• Hardware diversity likely to remain

−can be managed by software packages (e.g. PAPI, PCL)

• OS interface diversity creates an artificial barrier
−adds useless complexity to monitoring tools
−slows down large-scale development of tools

• benefits of a standard interface are multiple:
−uniform level of functionalities across platforms
−increases chances of adoption by OS distributors, ISVs
−developer focus on tools and not supporting infrastructure
−increases code reuse, avoid duplication of effort
−faster development, smaller learning curve

• added value is in tools/PMU not in OS interface

February 13, 2005 4

interface functionality requirements
• built-in, robust, secure, documented, regular user access
• access to all PMU features of present and future CPUs
• generic, flexible, efficient (minimize overhead)
• simple counting, sampling
• per-thread, system-wide
• self-monitoring, unmodified binary, attach/detach
• monitoring of multi-threaded, multi-process workloads
• scale to large NUMA-style machines
• support for existing tools

− on Linux: Oprofile-based, VTUNE™, HP Caliper, perfctr-based

February 13, 2005 5

interface design choices
• exploit common characteristics: register interface
• provide simple read/write operations on registers
• provide uniform view of PMU across platforms:

−use generic PMU register names, e.g., PMC and PMD
−export all counters as 64-bit

• focus on PMU access and NOT PMU programming
−PMU specific knowledge in user level libraries (e.g. events)

• avoid kernel bloat
−no feature integrated unless required for speed or by HW

• use a system-call rather than device driver model
−built-in, flexible, support for per-thread monitoring

February 13, 2005 6

perfmon2 experience
• generic monitoring interface to access PMU

−implemented in the 2.6 kernel series for Linux/ia64
−nothing specific to Itanium, ports to other architectures possible

• PMU is key to achieving performance on Itanium
−performance depends a lot of code quality

• Itanium PMU framework is specified by architecture:
−up to 256 PMC and 256 PMD, 2 events, start/stop, ovfl. intr.
−room for extensions within framework:

• Itanium® : 175 events, 4 counters (32bits), BTB, EARS, range
restrictions, opc. match

• Itanium® 2: 400 events, 4 counters (47bits), BTB, EARS, range
restrictions, opc. match

• Itanium is good tesbed for interface

February 13, 2005 7

perfmon2 interface
• perfmon context encapsulates all PMU state
• Each context uniquely identified by file descriptor
• logical PMU: set of control (PMC) and data (PMD) reg.
• kernel level sampling buffer
• support for event sets and multiplexing

int perfmonctl(int fd, int cmd, void *arg, int narg)
PFM_CREATE_CONTEXT PFM_READ_PMDS PFM_START
PFM_WRITE_PMCS PFM_LOAD_CONTEXT PFM_STOP
PFM_WRITE_PMDS PFM_UNLOAD_CONTEXT PFM_RESTART
PFM_CREATE_EVTSET PFM_DELETE_EVTSET PFM_GETINFO_EVTSET
PFM_GETINFO_PMCS PFM_GETINFO_PMDS PFM_GET_CONFIG
PFM_SET_CONFIG

February 13, 2005 8

challenges for sampling support
• overflow-based sampling needs kernel support

−period uses counter overflow interrupt mechanism
−kernel notification on counter overflow

• message-based notification mechanism
−signal required for self-monitoring

• number of periods = number of counters
−allows overlapping measurements (e.g., q-tools)

• kernel level sampling buffer for efficiency
−to amortize cost of notification
−must provide randomization to avoid biased samples

• customizable buffer format via kernel modules:
−controls what to record, how to record, how to export
−

February 13, 2005 9

sampling format examples
• want to sample kernel level call stack on cache misses:

−combine PMU-based sampling with kernel stack unwinder
−requires zero changes to perfmon2 interface or kernel core
−new buffer format: about 300 lines of C
−leverage: PMU programming, buffer remapping, notifications

• OProfile: 20 lines, full reuse of existing implementation
• focus on tool, not kernel support
$ pfmon -el3_misses --long-smpl-periods=2000 --smpl-periods-random=0xff:10 -k \
 --smpl-module=kcall-stack-ia64 --resolve-addr --system-wide

__copy_user,file_read_actor,do_generic_mapping_read,__generic_file_aio_read,
generic_file_aio_read,do_sync_read,vfs_read,sys_read,ia64_ret_from_syscall

do_anonymous_page,do_no_page,handle_mm_fault,ia64_do_page_fault,
ia64_leave_kernel

clear_page,do_anonymous_page,do_no_page,handle_mm_fault,ia64_do_page_fault,
ia64_leave_kernel

February 13, 2005 10

efficiency: event set support
• PMU limitations:

−limited number of counters, constraints on events/counters
−certain measurements may require multiple runs

• solution:
−create sets of up to n events when PMU has n counters
−multiplex sets on PMU
−scale counts (not without danger)

• can be implemented at the user level
−incurs high overhead because of context switches

• much faster when integrated in the interface:
−switching occurs within context of monitored thread
−flexibility: time and overflow-based switching

February 13, 2005 11

Conclusions
• Monitoring is key to achieving world-class performance
• PMU is a vital tool to pinpoint performance problems
• PMU hardware is diverse and likely to remain so
• monitoring tools can really benefit from standardized

kernel interface to access PMU
• Linux is a very good testbed for developing interface
• we must unify all Linux interfaces
• perfmon2 interface can serve as a basis for discussion
• for PMU HW designers:

−architect PMU frame in ISA, improve documentation
−more generic counters, faster access to counters

February 13, 2005 13

resources
• Itanium Processor Family (IPF) PMU architecture:

– http://developer.intel.com/design/itanium/

• perfmon2 specification:
−http://www.hpl.hp.com/techreports/2004/HPL-2004-200R1.html

• PAPI tookit:
– http://icl.cs.utk.edu/papi

• Oprofile:
– http://oprofile.sf.net

• VTUNE(Intel):
– http://www.intel.com/software/products/vtune

• Caliper(HP):
– http://www.hp.com/go/caliper

• Perfctr (Mikael Pettersson)
– http://user.it.uu.se/~mikpe/linux/perfctr/

