nnnnnn

The need for o
standardizeo
performance

monitoring intertace

Stéphane Eranian

HP Labs
February 2005
HPCA11, San Francisco, CA - USA

©2004Hw| t-Packard Dev |p nt Com pyLP
The infor n contained here b| change withou

I The situation today g

Hardware situation:
All processors include PMU, more than just counters
by nature, PMU is very implementation specitic

Operating system situation:
All major OS have a specific interface
Linux is worse: multiple interfaces available, not integrated
large functionality variations between intertaces

Monitoring software is diverse:
needs include counting, sampling, perthread/system-wide
used for application tuning, dynamic optimization

portability of tools affected by OS interface variations
user level toolkits (e.g., PAPI) cannot hide everything

February 13, 2005 2

why a standard interface? g

Hardware diversity likely to remain
can be managed by software packages (e.g. PAPI, PCL)

OS intertace diversity creates an artiticial barrier

adds useless complexity to monitoring tools
slows down large-scale development of tools

benetits of a standard intertace are multiple:
uniform level of functionalities across platforms
increases chances of adoption by OS distributors, ISVs
developer focus on tools and not supporting infrastructure
increases code reuse, avoid duplication of ettort
taster development, smaller learning curve

added value is in tools/PMU not in OS interface

February 13, 2005

I interface functionality requirements oA

built-in, robust, secure, documented, regular user access
access to all PMU features of present and future CPUs
generic, tlexible, efticient (minimize overhead)

simple counting, sampling

perthread, system-wide

self-monitoring, unmoditied binary, attach/detach
monitoring of multithreaded, multi-process workloads
scale to large NUMA-style machines

support for existing tools
on Linux: Oprofile-based, VTUNE™, HP Caliper, perictr- bosed

February 13, 2005

interface design choices pty
exploit common characteristics: register interface
provide simple read/write operations on registers

provide uniform view of PMU across plattforms:
use generic PMU register names, e.g., PMC and PMD
export all counters as 64-bit

focus on PMU access and NOT PMU programming

PMU specific knowledge in user level libraries (e.g. events)

avoid kernel bloat
no feature integrated unless required for speed or by HW

use a system-call rather than device driver model
built-in, flexible, support tor perthread monitoring

February 13, 2005 5

perfmon2 experience piar

generic monitoring interface to access PMU
implemented in the 2.6 kernel series for Linux/ia64
nothing specific to ltanium, ports to other architectures possible

PMU is key to achieving performance on ltanium
performance depends a lot of code quality

ltanium PMU tramework is specitied by architecture:
up to 256 PMC and 256 PMD, 2 events, start/stop, ovil. intr.

room for extensions within framework:
ltanium® : 175 events, 4 counters (32bits), BTB, EARS, range

restrictions, opc. match

ltanium® 2: 400 events, 4 counters (47bits), BTB, EARS, range

restrictions, opc. match

ltanium is good tesbed for interface

February 13, 2005

perfmon?2 interface pr

pertmon context encapsulates all PMU state

Each context uniquely identitied by file descriptor
logical PMU: set of control (PMC) and data (PMD) reg.
kernel level sampling butfer

support for event sets and multiplexing

int pertmonctl(int fd, int cmd, void *arg, int narg)

PFM_CREATE_CONTEXT PFM_READ_PMDS PFM_START
PFM_WRITE_PMCS PFM_LOAD_CONTEXT PFM_STOP
PFM_WRITE_PMDS PFM_UNLOAD_CONTEXT PFM_RESTART
PFM_CREATE EVTSET PFM_DELETE_EVTSET PFM_GETINFO_EVTSET
PFM_GETINFO_PMCS PFM_GETINFO_PMDS PFM_GET CONFIG
PFM_SET CONFIG

February 13, 2005 7

challenges tor sampling support e

overtlow-based sampling needs kernel support

period uses counter overtlow interrupt mechanism
kernel notification on counter overflow

message-based notification mechanism
signal required for selft-monitoring

number of periods = number of counters
allows overlapping measurements (e.g., g-tools)

kernel level sampling bufter for efficiency
to amortize cost of notification
must provide randomization to avoid biased samples

customizable buffer format via kernel modules:
controls what to record, how to record, how to export

February 13, 2005 8

sampling format examples

want to sample kernel level call stack on cache misses:
combine PMU-based sampling with kernel stack unwinder
requires zero changes to perfmon?2 interface or kernel core
new bufter format: about 300 lines of C
leverage: PMU programming, butter remapping, notitications

OProtile: 20 lines, full reuse ot existing implementation

focus on tool, not kernel support

$ pfmon -e --long-smp1-periods=2000 --smpl-periods-random=0xff:10 -k \
--smpl-module=kcall-stack-i1a64 --resolve-addr --system-wide

__copy_user,file_read_actor,do_generic_mapping_read,__generic_file_aio_read,
generic_file_aio_read,do_sync_read,vfs_read,sys_read,ia64_ret_from_syscall

do_anonymous_page,do_no_page,handle_mm_fault,ia64_do_page_fault,
ia64_leave_kernel

clear_page,do_anonymous_page,do_no_page,handle_mm_fault,ia64_do_page_fault,
1a64_leave_kernel

February 13, 2005 9

efticiency: event set support p
PMU limitations:

limited number of counters, constraints on events/counters
certain measurements may require multiple runs

solution:
create sets of up to n events when PMU has n counters
multiplex sets on PMU
scale counts (not without danger)

can be implemented at the user level
incurs high overhead because of context switches

much faster when integrated in the intertace:
switching occurs within context of monitored thread
tlexibility: time and overtlow-based switching

February 13, 2005 10

. |
I Conclusions 3

Monitoring is key to achieving world-class performance
PMU is a vital tool to pinpoint performance problems
PMU hardware is diverse and likely to remain so

monitoring tools can really benefit from standardized
kernel intertace to access PMU

Linux is a very good testbed for developing interface
we must unity all Linux interfaces

pertmon? interface can serve as a basis for discussion

for PMU HW designers:

architect PMU frame in ISA, improve documentation
more generic counters, faster access to counters

February 13, 2005 11

nnnnnn

resources

ltanium Processor Family (IPF) PMU architecture:
http://developer.intel.com/design/itanium/

pertmon?2 specitication:
http://www.hpl.hp.com/techreports/2004/HPL-2004-200R 1 .htm|

PAPI tookit:
http://icl.cs.utk.edu/papi

Oprofile:
http://oprofile.sf.net

VTUNE(Intel):
http://www.intel.com/software/products/vtune

Caliper(HP):
http://www.hp.com/go/caliper

Perfctr (Mikael Pettersson)
http://user.it.uu.se/~mikpe/linux/pertctr/

February 13, 2005

nnnnn

