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Isn’t the miss rate enough?
typedef struct {
int a,

b,
c, 
d;

} my_struct_type;

my_struct_type s[1024];
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L1 cache: 16kB, 64B blocks, direct mapped 
(256 lines)

s[i] = 16B (4x4B) s[0]-s[3] same cache line L1
s[0]-s[1023]: 256 cache lines

Cache Example 1
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for (i=0; i<1024; i+=4) {
r += s[i].a;
s += s[i].b;

}

Total: 256 L1misses

sequential  accesses: 256
(data access refers to next memory cell) 

Example - Locality
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Example - Locality
for (i=0; i<1024; i+=4) {
r += s[i].a;
s += s[i+3].b;

}

Total: 256 L1misses

accesses to same line L1: 256
… same line L2: 128 (L2 line = 2 x L1 line)

255

…

1

0



7

L1 cache: 8kB, 32B blocks, direct mapped 
(256 lines)

s[i] = 16B (4x4B) s[0]-s[1] same cache line L1
s[0]-s[1024]: 512 cache lines

Cache Example 2
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Example 

for (i=0; i<1024; i+=2) 256+256 Misses
r += s[i].a;

for (i=0; i<1024; i+=2) 256+256 Misses
s += s[i].b;

Total: 1024 L1misses

same line L1:     0
same line L2: 512 (L2 line = 2 x L1 line)
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Example – Improve Locality

for (i=0; i<1024; i+=2) {
r += s[i].a; 256+256 Misses
s += s[i].b; Hits

}

Total: 512 L1misses

sequential : 512
same line L2: 256 (L2 line = 2 x L1 line)
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Example – Smaller Working Set 
for (i=0; i<512; i+=2)    256 Misses

r += s[i].a;
for (i=0; i<512; i+=2) Hits

s += s[i].b;
for (i=512; i<1024; i+=2) 256 Misses

r += s[i].a;
for (i=512; i<1042; i+=2) Hits

s += s[i].b;

Total: 512 L1misses

random accesses L1: 512
(neither sequential nor to the same line)

same line L2: 256 (L2 line = 2 x L1 line)
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Locality Information
• Spatial locality: distance between two 

consecutive data accesses 

• Understanding locality key to many program 
transformations

• Gathering detailed access information is 
challenging and expensive
– Can’t afford to record all accesses
– Need simple way to capture program characteristics
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Proposal: Locality Information

Classify (data) accesses according to their 
performance :
– accesses to the same location
– sequential accesses: pipelined transfers
– accesses within the same cache line: whole line fetch
– random accesses: read ahead and prefetching do not 

help
Good estimation of program locality provided by 

the frequency of each access type
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Counters for Locality Information 
Gathering

Set of counters to capture accesses 
according to classification:
– C_same: accesses to the same location
– C_seq: sequential accesses
– C_line_i: accesses to the same cache line 

for each cache level i
– random accesses can be computed from 

these counters and cache hit rates
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Possible Implementation
F and S addresses of two consecutive accesses

if (F == S) {
C_same++;
return;

}
if (|F-S|/access_size == 1) {
C_seq++;
return;

}
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Possible Implementation (cont.)
/* neither same, nor sequential */

L1 cache
if S is a L1 hit {

determine cache line Line_F of F
determine cache line Line_S of S
if (Line_F == Line_S)

C_line_1++;
return;

} else  /* S is a L1 miss */
continue with L2
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Random Accesses (Hits)

Capture other accesses to level i

N_random_L1 = 
N_hits_L1 - C_same - C_seq –
- C_line_1

N_random_L2 = 
N_hits_L2 - C_line_2
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Usage scenarios

• Identify segments of code with poor spatial 
locality 

improve code locality

• Locality counters can be a basis for 
performance analysis

Compare execution time before and after 
transformation, insights about effectiveness of 
a transformation.
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Summary

• Use performance monitoring counters to 
capture a program’s spatial locality

• Few counters can provide useful 
information
– 2 cache levels: 4 counters
– 3 cache levels: 5 counters
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Thank you!
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Caveats & Issues

• Reset counters on cache misses
• C_seq: accesses with stride 1 

– stride is 1 in source language terms
• If we can afford more counters, different 

strides are interesting


