
1

Collecting Information on
Locality

(Data Accesses)

Irina Chihaia Tuduce and Thomas Gross
Laboratory for Software Technology

ETH Zurich, Switzerland
http://www.lst.inf.ethz.ch/

2

Memory System Performance

http://www.cs.inf.ethz.ch/CoPs/ECT/

3

Isn’t the miss rate enough?
typedef struct {
int a,

b,
c,
d;

} my_struct_type;

my_struct_type s[1024];

4

L1 cache: 16kB, 64B blocks, direct mapped
(256 lines)

s[i] = 16B (4x4B) s[0]-s[3] same cache line L1
s[0]-s[1023]: 256 cache lines

Cache Example 1

255

…

1

0

5

for (i=0; i<1024; i+=4) {
r += s[i].a;
s += s[i].b;

}

Total: 256 L1misses

sequential accesses: 256
(data access refers to next memory cell)

Example - Locality

255

…

1

0

6

Example - Locality
for (i=0; i<1024; i+=4) {
r += s[i].a;
s += s[i+3].b;

}

Total: 256 L1misses

accesses to same line L1: 256
… same line L2: 128 (L2 line = 2 x L1 line)

255

…

1

0

7

L1 cache: 8kB, 32B blocks, direct mapped
(256 lines)

s[i] = 16B (4x4B) s[0]-s[1] same cache line L1
s[0]-s[1024]: 512 cache lines

Cache Example 2

255

…

1

0

8

Example

for (i=0; i<1024; i+=2) 256+256 Misses
r += s[i].a;

for (i=0; i<1024; i+=2) 256+256 Misses
s += s[i].b;

Total: 1024 L1misses

same line L1: 0
same line L2: 512 (L2 line = 2 x L1 line)

9

Example – Improve Locality

for (i=0; i<1024; i+=2) {
r += s[i].a; 256+256 Misses
s += s[i].b; Hits

}

Total: 512 L1misses

sequential : 512
same line L2: 256 (L2 line = 2 x L1 line)

10

Example – Smaller Working Set
for (i=0; i<512; i+=2) 256 Misses

r += s[i].a;
for (i=0; i<512; i+=2) Hits

s += s[i].b;
for (i=512; i<1024; i+=2) 256 Misses

r += s[i].a;
for (i=512; i<1042; i+=2) Hits

s += s[i].b;

Total: 512 L1misses

random accesses L1: 512
(neither sequential nor to the same line)

same line L2: 256 (L2 line = 2 x L1 line)

11

Locality Information
• Spatial locality: distance between two

consecutive data accesses

• Understanding locality key to many program
transformations

• Gathering detailed access information is
challenging and expensive
– Can’t afford to record all accesses
– Need simple way to capture program characteristics

12

Proposal: Locality Information

Classify (data) accesses according to their
performance :
– accesses to the same location
– sequential accesses: pipelined transfers
– accesses within the same cache line: whole line fetch
– random accesses: read ahead and prefetching do not

help
Good estimation of program locality provided by

the frequency of each access type

13

Counters for Locality Information
Gathering

Set of counters to capture accesses
according to classification:
– C_same: accesses to the same location
– C_seq: sequential accesses
– C_line_i: accesses to the same cache line

for each cache level i
– random accesses can be computed from

these counters and cache hit rates

14

Possible Implementation
F and S addresses of two consecutive accesses

if (F == S) {
C_same++;
return;

}
if (|F-S|/access_size == 1) {
C_seq++;
return;

}

15

Possible Implementation (cont.)
/* neither same, nor sequential */

L1 cache
if S is a L1 hit {

determine cache line Line_F of F
determine cache line Line_S of S
if (Line_F == Line_S)

C_line_1++;
return;

} else /* S is a L1 miss */
continue with L2

16

Random Accesses (Hits)

Capture other accesses to level i

N_random_L1 =
N_hits_L1 - C_same - C_seq –
- C_line_1

N_random_L2 =
N_hits_L2 - C_line_2

17

Usage scenarios

• Identify segments of code with poor spatial
locality

improve code locality

• Locality counters can be a basis for
performance analysis

Compare execution time before and after
transformation, insights about effectiveness of
a transformation.

18

Summary

• Use performance monitoring counters to
capture a program’s spatial locality

• Few counters can provide useful
information
– 2 cache levels: 4 counters
– 3 cache levels: 5 counters

19

Thank you!

20

Caveats & Issues

• Reset counters on cache misses
• C_seq: accesses with stride 1

– stride is 1 in source language terms
• If we can afford more counters, different

strides are interesting

