
Using Hardware Event Counters for Continuous, Online

System Optimization: Lessons and Challenges

Christos D. Antonopoulos and Dimitrios S. Nikolopoulos
Department of Computer Science
The College of William and Mary

McGlothlin–Street Hall
Williamsburg, VA 23187–8795

Most modern processors offer hardware support for monitoring performance events re-
lated to the interaction of applications with specific subunits of the processor [4, 7, 8, 9, 10].
The insight attained from performance monitoring counters is useful for both application
programmers and processor manufacturers. Programmers typically employ them as a pow-
erful tool for post-mortem analysis, identification and resolution of performance bottlenecks
in their applications. Processor manufacturers, on the other hand, can collect valuable in-
formation on the performance of their products while the latter are used in production
environments. This knowledge is then exploited during the design phase of future products.

Our project, MOHCA (MOnitoring of Hardware for Continuous Adaptation) exploits
performance monitoring counters in a different way. The counters are used for online mon-
itoring of hardware events. The information collected is fed back to OS scheduling policies,
providing them with awareness of the dynamically changing characteristics of the execution
environment and allowing them to continuously adapt to these characteristics and reach
more educated scheduling decisions. The scheduling policies have been implemented in the
context of a processor manager, i.e. a server process which applies kernel-level scheduling
decisions from user-level. Although this approach introduces practically negligible overhead,
since counters do not need to be sampled frequently, it has been totaly neglected by current
OS schedulers. We have already implemented a successful prototype in Linux, and used it
to efficiently schedule workloads on SMPs consisting of multiple Intel HyperThreaded (HT)
processors. The same prototype can be used on generic multi-SMT or future multi-CMP
systems. The performance gains due to the use of feedback-driven scheduling policies are sig-
nificant, even in current architectures. Moreover, the performance impact is projected to be
huge in future multicore architectures, where a full-blown multiprogrammed/multiprocessor
operating system with distributed functionality will be contained in a single chip. More in-
formation and results from this project are presented in recent publications [1, 2, 6].

The current implementation of HyperThreaded (HT) processors from Intel shares perfor-
mance monitoring hardware among both execution contexts available on the same physical
processor. As a result, conflicts may arise if both threads executing on the same processor
attempt to use performance monitoring. The strategy typically adopted by system software
to deal with the problem is to disallow the execution of two threads using performance coun-
ters on the same physical processor. This restriction has adverse effects on the usability of
performance monitoring facilities on HT processors. In particular, disabling threads makes
online performance monitoring for continuous adaptation infeasible. We have managed to
overcome this limitation by using 2 sets of performance monitoring registers for each event

1



to be measured. Both sets are activated at the thread which is executed on the first virtual
processor of each physical processor. At the same time, we take advantage of a bitmask
in the performance monitoring configuration registers which allows the association of each
event with the virtual processor that triggered it. Given that the processor manager has full
control on the execution of threads on virtual processors, events can be correctly attributed
to specific threads at the end of each scheduling quantum.

Our thesis is that continuous, online system optimization using feedback from hard-
ware counters is not only a useful but also a necessary measure to optimize performance
and productivity while taming the complexity of high-end systems. It is therefore impor-
tant to consider both hardware and system software support for transparent, accurate and
portable online monitoring of hardware events. The current hardware and software support
for this task is immature and although some workarounds can be applied from user-level
with minimal, or no kernel-level modifications, as HT, SMT and multicore processors be-
come gradually more widespread, a systematic solution, either at the hardware- or system
software-level is required. In the rest of this position paper we outline some hardware and
software features that would facilitate the implementation of a viable online performance
monitoring infrastructure for continuous adaptation.
Cost-Effective, Thread-Local Event Monitoring: Ideally, performance monitoring
hardware should be replicated in future processors, once for each context executing concur-
rently on the same physical package. If this is not possible, due to either cost or technical
restrictions, the problem should be dealt with by the system software, transparently to the
applications programmer. Some processors - Intel HT and IBM Power series processors
are typical examples [4, 10] - introduce complex dependencies between the events to be
measured, the event counters and the configuration registers to be used. However, even
for these processors, it is possible to partition performance monitoring hardware in sets,
so that each set is capable of measuring almost any event. In other words, it is generally
possible for system software to provide the virtual notion of per thread performance moni-
toring hardware infrastructure, at the expense of limitations in the number of concurrently
measurable events.
Overhead and Intrusiveness: An important issue, beyond guaranteeing the unhindered
ability to use performance monitoring facilities in all modern architectures, is the mini-
mization of the overhead for configuring the counters and collecting their values. Although
our kernel schedulers have not been hampered by performance monitoring overhead due
to their coarse time quanta, low overhead is necessary if counter values are to be sam-
pled at high rates, in order to achieve a more accurate correlation of code segments or
program phases with the monitored performance metrics. In particular, low-overhead mon-
itoring is paramount if continuous optimization is to be applied to individual programs.
The resolution of inter-thread conflicts for performance monitoring units at the hardware
level would permit the use of unprotected, user-level instructions for counter configuration
and sampling, thus significantly lowering the corresponding overheads. An alternative and
more aggressive strategy with the same goal is to offer - once again at the hardware level
- functionality for non-intrusive hardware monitoring. An example of such functionality
is given by reconfigurable Liquid architectures [5]. Liquid architectures have specialized
hardware for continuous streaming of <PC,event> pairs on an instruction by instruction
basis, as instructions are executed by the processor. The event streams are fed to compilers
and used to customize reconfigurable hardware modules, such as caches and prefetchers, to
the characteristics of the stream. By using dedicated hardware for online monitoring, the
architecture offloads most of the monitoring overhead from the processor and is capable of

2



extremely fine-grain and efficient adaptation to observed hardware metrics.
Standardization: Another fundamental impediment for the widespread exploitation of
performance monitoring hardware is the lack of standarization, in terms of both the set of
measurable events on each processor and the API exported to the programmer. As a result,
code designed to use performance monitoring hardware is often not portable across different
generations, or even different models of the same processor. Moreover, some processors do
not support monitoring of basic performance metrics, such as read / write miss rates at all
levels of the cache or, even worse, introduce inaccuracies of up to two orders of magnitude.
Representative examples, on Intel P4 processors, are the events IOQ allocation which is
configured differently on different P4 models and BSQ cache reference which may, under
certain circumstances, over- or under-count by a factor of two [4]. In addition to the
noteworthy effort of standardizing the interfaces to the hardware counter configurations of
different architectures, which is exemplified by PAPI [3], it is important to define formally a
standard set of events that should be supported reliably by all architectures. According to
our experience, it is the lack of reliable hardware support and functionality that impedes a
continuous hardware monitoring infrastructure more often than the lack of a standardized
interface.
Conveying Information on Contention: An additional obstacle in the use of hardware
counters for system optimization is the absence of information about the contention between
threads for shared resources. Queues, either virtual or physically implemented, are used as
buffers at the front-end of shared resources, at all levels of modern system architectures.
The average length of these queues is a valuable metric for the estimation of the expected
latency to the shared resource. Intel P4 processors, for example, allow such an estimation
for resources like the cache or the front-side bus, as the ratio of the cumulative number
of outstanding accesses to a resource divided by the number of distinct accesses to the
same resource. Similar data would be very useful for other internal queues, such as the
microops queues between the instruction issue unit and the execution units. The estimation
of latencies for access to shared resources is of critical importance, especially for HT, SMT
or multicore designs which inherently increase the degree of sharing inside or at the border
of the processor package.

In HT and SMT architectures it would be possible to accurately characterize contention
for shared resources by threads executing on the same processor, at the cost of some addi-
tional tagging of microops or cache lines. For example, tagging microops according to the
execution context that issued them would allow the detection of stalls due to interference
with other threads on execution units, cache ports or memory read / write buffers. Tagging
cache lines, on the other hand, according to the threads that have touched them, facili-
tates the estimation of the cache footprint of each thread - a valuable hint for scheduling
policies targeting cache affinity - or the detection of cross-thread eviction in the form of
conflict misses. In general, an accurate characterization of stalls or conflicts would help
performance-driven scheduling policies to enforce optimal thread pairings, resulting to sig-
nificant performance gains.
Characterizing Misses: The characterization of cache misses is another feature which
is notably absent from current hardware performance monitoring infrastructures. To some
extent this is reasonable as the algorithms for classifying cache misses on uniprocessors and
multiprocessors can be quite complex. However, some information besides raw numbers can
be enlightening for online optimization. For example, cross-thread eviction of cache lines can
characterize the contention between threads in the cache and help the system identify easily
cache thrashing. Regional counters of the per-thread population of cache lines in each cache

3



bank, or each page-size region in the cache, can be used to illustrate the affinity of threads
for specific ranges in the cache. Such information can enable sophisticated online memory
optimizations, most notably, dynamic page coloring and page remapping from the operating
system. We foresee that online optimization of memory allocation and management will be
equally critical to the optimization of scheduling decisions in operating systems designed
for emerging multithreaded and multicore microprocessors.
Monitoring Memory Pressure on Specific Address Ranges: Monitoring per thread
accesses to virtual address ranges is useful for cache indexing, since it permits the identi-
fication of ‘hot’ and ‘cold’ areas in the virtual address space. Moreover, it may be useful
for associating objects with addresses at run-time and providing feedback to run-time op-
timizers or profile guided compilation. Monitoring of accesses to physical address ranges,
on the other hand, can be exploited, in NUMA systems, to optimize data placement in
memory for either locality or energy control. As NUMA architectures become more pop-
ular and NUMA systems appear even at low-end, low-cost configurations, such as AMD
Opteron-based multiprocessors, the ability to monitor thread accesses to memory address
ranges gains importance and such a provision is necessary in future processors. At first,
it may seem inevitable to combine information for events both internal and external to
the processor, however the required support can actually be consolidated in the processor.
The processor has all the necessary information on both virtual memory accesses and their
association with physical addresses.

We have successfully employed hardware counters to implement continuous optimization
infrastructures for kernel schedulers. Our experience suggests that a number of drawbacks
in the currently available infrastructures preclude the characterization and summarization
of hardware events, as required by an online optimization system. In our view, a coordinated
effort by both hardware designers and system software developers is needed to address these
issues. Hardware designers should focus on the characterization of hardware events that are
direct indicators of performance losses and their sources, such as inter-thread contention,
as well as on reliability and portability issues. System software designers should keep work-
ing on integrating low-overhead and non-intrusive performance monitoring into transparent
system modules that will eventually enable runtime monitoring and adaptation. We be-
lieve that current operating systems can be extended with a reasonable effort to employ
continuous optimization in their fundamental resource management modules, including the
CPU scheduler, memory management and networking modules. More efficient hardware
support for non-intrusive hardware monitoring is needed to employ continuous adaptation
in individual applications. We see both system-level and application-level adaptation via
hardware monitoring as a promising path towards leveraging the computational power of
future high-end systems.

Acknowledgements

This work is supported by an NSF ITR grant (ACI-0312980), an NSF CAREER award
(CCF-0346867), an IST grant (No. 2001-33071), and the College of William and Mary. We
would like to thank Rob McGregor and Theodore Papatheodorou for earlier contributions
to this project.

4



References

[1] C. Antonopoulos, D. Nikolopoulos, and T. Papatheodorou. Scheduling Algorithms
with Bus Bandwidth Considerations for SMPs. In Proc. of the 33rd International
Conference on Parallel Processling (ICPP’2003), pages 547–554, Kaohsiung, Taiwan,
October 2003.

[2] C. Antonopoulos, D. Nikolopoulos, and T. Papatheodorou. Realistic Workload Schedul-
ing Policies for Taming the Memory Bandwidth Bottleneck of SMPs. In Proc.
of the 2004 IEEE/ACM International Conference on High Performance Computing
(HiPC’2004), pages 286–296, Bangalore, India, December 2004. LNCS Vol. 3296.

[3] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A Scalable Cross-
Platform Infrastructure for Application Performance Tuning Using Hardware Coun-
ters. In Proc. of Supercomputing’2000: High Performance Networking and Computing
Conference (SC’2000), Dallas TX, November 2000.

[4] Intel Corporation. Intel Architecture Software Developer’s Manual. Volume 3: System
Programming Guide, 2004. http://developer.intel.com.

[5] P. Jones, S. Padmanabhan, D. Rymarz, J. Maschmeyer, D. Schuehler, J. Lockwood,
and R. Cytron. Liquid Architecture. In Proc. of the 2004 NSF NGS Workshop (held
in conjunction with IPDPS’2004), Santa Fe, NM, April 2004.

[6] R. McGregor, C. Antonopoulos, and D. Nikolopoulos. Scheduling Algorithms for Ef-
fective Thread Pairing on Hybrid Multiprocessors. In Proc. of the 19th IEEE/ACM
International Parallel and Distributed Processing Symposium (IPDPS’2005), Denver,
CO, April 2005.

[7] SGI. Topics In Irix Programming, Chapter 4. http://techpubs.sgi.com.

[8] A. Singhal and A. J. Goldberg. Architectural Support for Performance Tuning: A
Case Study on the SPARCcenter 2000. ACM SIGARCH Computer Architecture News,
Proc. of the 21st Annual International Symposium on Computer Architecture (ISCA
94), 22(2), April 1994.

[9] L. Smolders. PowerPC Hardware Performance Monitoring. Technical report, AIX
Performance, IBM Server Group, November 2001.

[10] L. Smolders. System and Kernel Thread Performance Monitor API Reference Guide.
IBM, RS/6000 Division, 2001.

5


