
Optimizing Sparse Matrix Vector Product Computations Using

Unroll and Jam∗

John Mellor-Crummey and John Garvin
Department of Computer Science

Rice University
Houston, TX 77005-1892

August 30, 2002

Abstract

Large-scale scientific applications frequently compute sparse matrix vector products in their com-
putational core. For this reason, techniques for computing sparse matrix vector products efficiently on
modern architectures are important. This paper describes a strategy for improving the performance of
sparse matrix vector product computations using a loop transformation known as unroll-and-jam. We
describe a novel sparse matrix representation that enables us to apply this transformation. Our approach
is best suited for sparse matrices that have rows with a small number of predictable lengths. This work
was motivated by sparse matrices that arise in SAGE, an ASCI application from Los Alamos National
Laboratory. We evaluate the performance benefits of our approach using sparse matrices produced by
SAGE for a pair of sample inputs. We show that our strategy is effective for improving sparse matrix
vector product performance using these matrices on MIPS R12000, Alpha Ev67, IBM Power 3 and Ita-
nium processors. Our measurements show that for this class of sparse matrices, our strategy improves
sparse matrix vector product performance from a low of 11% on MIPS to well over a factor of two on
Itanium.

1 Introduction

Sparse matrix vector product computations are at the heart of many modern scientific applications; how-
ever, they often perform poorly on modern computer systems. Poor performance results from several factors.
First, unlike dense matrices, sparse matrices require an explicit representation of the coordinates of non-
zero elements. Manipulating this coordinate representation when computing a sparse matrix vector product
consumes memory bandwidth, which is a scarce commodity in computer systems based on modern mi-
croprocessors. Second, sparse matrix computations have less temporal reuse of values than dense matrix
computations; this makes it hard to use registers and caches effectively. Third, the loop structure of a matrix
vector product computation using a sparse matrix is significantly less regular than one using a dense matrix;
this leads to less efficient compiler-generated code. Im and Yelick [11] report a factor of two performance
penalty for computing a matrix vector product on dense matrices using a sparse matrix representation rather
than a dense matrix representation.
The inefficiency of computing sparse matrix vector products has prompted research into strategies for

improving their performance. Techniques that have been explored include development of a variety of sparse
matrix representations, matrix reordering, employing multiple representations in concert, cache and register
blocking, and combinations of these approaches. Section 5 presents a summary of these strategies.

∗This research was supported in part by the Los Alamos National Laboratory Computer Science Institute (LACSI) through
LANL contract number 03891-99-23 as part of the prime contract (W-7405-ENG-36) between the DOE and the Regents of the
University of California and the Department of Energy’s Accelerated Strategic Computing Initiative under research subcontract
B347884.

1



SAIC’s Adaptive Grid Eulerian hydrodynamics code (SAGE) is a computationally-intensive, multi-dimensional,
multi-material code that employs cell-by-cell adaptive refinement on a hexahedral mesh of cells [12]. In work-
ing with this code, we found that a significant fraction of its execution time was spent computing sparse
matrix vector products. Furthermore, we found that SAGE’s adaptive mesh refinement scheme yields sparse
matrices with properties that make it difficult to multiply them efficiently with a vector on modern micropro-
cessors. SAGE’s sparse matrices typically have only a few elements per row and contain no patterns of local
density, even after row and column reordering. For this reason, neither register or cache blocking algorithms
were effective for improving sparse matrix vector product performance with SAGE’s sparse matrices.
In this paper, we explore a new strategy for improving the performance of sparse matrix vector product

computations for a class of matrices that includes those used by SAGE. We describe a new sparse matrix
organization that enables us to optimize sparse matrix vector product computations by using a loop trans-
formation known as unroll-and-jam [2]. We found that this data structure and computation reorganization
improves performance from 11% to well over a factor of two on the architectures we studied.
The next section briefly describes SAGE, its representation for sparse matrices and the performance results

that motivated our investigation of this problem. Section 3 describes our data and computation transforma-
tion for accelerating sparse matrix vector product computations for SAGE on modern microprocessor-based
systems. Section 4 presents an experimental evaluation of our approach. Section 5 describes related work.
Section 6 summarizes our findings and conclusions.

2 Background

2.1 SAGE

SAGE is a parallel, multi-dimensional, multi-material, Eulerian hydrodynamics code that employs cell-by-cell
adaptive refinement of a hexahedral mesh of cells [12]. SAGE was developed by SAIC (Scientific Applications
International Corporation) and Los Alamos National Laboratory (LANL) as part of the Department of
Energy’s Accelerated Strategic Computing Initiative (ASCI). In LANL’s Crestone project, SAGE is being
used to explore the utility of continuous adaptive Eulerian techniques for simulation of the nation’s nuclear
stockpile. SAGE represents a large class of ASCI applications at LANL that run for months at a time on
2000–4000 processors [12]. In addition to stockpile stewardship, SAGE is used for simulating a variety of
phenomena that arise in scientific and engineering problem domains.
SAGE’s computational core consists of a conjugant gradient solver that requires each processor to com-

pute a sparse matrix vector product in each iteration. Each time the solver is invoked, a sparse matrix
representation on each node is built from data structures that represent the arrangement of mesh cells. The
cost of building the sparse matrix representation on each processor is insignificant with respect to the amount
of time spent performing sparse matrix vector multiplication in the solver. On the problems of interest at
LANL, the solver typically runs hundreds to thousands of iterations before its convergence criteria are sat-
isfied. To guide our investigation of techniques for improving the node performance of sparse matrix vector
product computations that arise in SAGE, we studied sparse matrices formed by SAGE in single-processor
simulations of two test problems. We used the timing c and timing b test problems provided to us by
scientists at LANL as the basis for our study. Both inputs trigger three-dimensional simulations of two
materials using adaptation and heat conduction. The timing c input triggers a simulation in a long, skinny
domain and yields a symmetric sparse matrix of with 72,000 rows containing 467, 568 non-zero elements.
The timing b input triggers a smaller simulation in a cubical domain and yields a symmetric sparse matrix
with 38,464 rows containing 246, 634 non-zero elements.

2.2 Compressed Sparse Row Format

SAGE uses a Compressed Sparse Row (CSR) representation for sparse matrices. Figure 1 illustrates the
organization of a conventional CSR matrix representation. The matrix is represented by three vectors: cols,
which contains all column indices of non-zeroes in the matrix (ordered by row), nz, which contains the non-
zero value corresponding to each entry in cols, and rowstart, which indicates the position in cols and nz



12 52 4 97939 47 2

1 3 8owstart

. ...9 1.5 9.0 .2.4.2 8.1 7.0 . . .

. . .cols

nz

. . .

Figure 1: Compressed Sparse Row (CSR) format.

1 subroutine csr_mvmult(csr_nrows, csr_rowstart, csr_cols, csr_nz, x, result)

2 use define_kind

3 implicit none

4

5 ! --------- arguments ----------

6 integer :: csr_nrows, csr_rowstart(*), csr_cols(*)

7 real(REAL8) :: csr_nz(*), x(*), result(*)

8

9 ! ------- local variables ------

10 real(REAL8) :: tmp

11 integer :: row, col, firstcol, nextfirstcol

12

13 firstcol = csr_rowstart(1)

14 do row = 1, csr_nrows

15 tmp = 0.0

16 nextfirstcol = csr_rowstart(row+1)

17 do col = firstcol, nextfirstcol-1

18 tmp = tmp + csr_nz(col) * x(csr_cols(col))

19 enddo

20 result(row) = tmp

21 firstcol = nextfirstcol

22 enddo

23

24 return

25 end subroutine csr_mvmult

Figure 2: Sparse matrix vector multiplication using CSR format.

of the first element of each row. On microprocessor-based systems, CSR format is commonly used for sparse
matrix vector product computations. Since each row of the matrix in CSR format is contiguous, a register
can be used to accumulate the result of the dot product of the row’s non-zero entries with a vector.
Figure 2 shows a canonical procedure for performing sparse matrix vector multiplication using a matrix

in CSR format. The first argument to the procedure csr mvmult specifies the number of matrix rows. The
next three arguments specify the sparse matrix data structure components rowstart, cols, and nz shown
in Figure 1. The final two arguments specify an input vector x and a result vector result. The outer loop
in csr mvmult computes the length of the current row as the difference between the start of the next row
and the start of the current row. The inner loop accumulates a dot product of the non-zeroes in the row and
their corresponding entries in the vector x. In this procedure, the rowstart, cols, nz and result vectors
are accessed in sequential order with spatial but not temporal reuse. The values of x are accessed in the
order dictated by the sequence of values in cols; this order is potentially arbitrary and may result in spatial
and/or temporal reuse of values in x.



Timing-C matrix Timing-B matrix

Row Length Rows % Rows Non-zeroes % Non-zero Rows % Rows Non-zeroes % Non-zero

1 3,600 5 3,600 1 4,296 11 4,296 2
4 8 < 1 32 < 1 8 < 1 32 < 1
5 1,096 2 5,480 1 189 < 1 945 < 1
6 17,584 24 105,504 23 3,024 8 18,144 7
7 47,912 67 335,384 72 28,861 75 202,027 82
8 16 < 1 128 < 1 18 < 1 144 < 1
9 400 < 1 3600 < 1 276 < 1 2,484 1
10 1,384 2 13,480 3 1,566 4 15,660 6
11 0 0 0 0 3 < 1 33 < 1
12 0 0 0 0 42 < 1 504 < 1
13 0 0 0 0 177 < 1 2,301 1
16 0 0 0 0 4 < 1 64 < 1

totals 72,000 100 467,568 100 38,464 100 246,634 100

Table 1: Distribution of row lengths and non-zeroes in SAGE timing c and timing b examples.

2.3 Motivation

A preliminary investigation of the performance of sparse matrix vector product computations in SAGE found
them to be quite slow, but suggested several promising directions for further investigation.
Version 20010624 of the SAGE code computed sparse matrix vector products in a curious way. Rather

than indirectly accessing elements of the input vector x using column indices from csr cols when performing
the multiplication, the values of x were replicated into x nz, a vector with length equal to the number of
non-zeroes in the matrix. The Fortran 90 code fragment below shows this replication strategy.

allocate (x_nz(size(csr_cols)))
do i = 1, size(csr_cols)
x_nz(i) = x(csr_cols(i))

enddo

Unlike x, which must be indexed indirectly during CSR sparse matrix vector multiplication, x nz can be
indexed directly in stride one order. Performance analysis of this approach on a MIPS R12000 and Alpha
EV6.7 indicated that when the cost of replicating x into x nz is combined with the cost of the sparse
matrix vector product using the longer x nz, the overall performance of this approach is a factor of two
slower than simply performing CSR matrix vector multiplication as shown in Figure 2. After this result was
communicated to the Crestone application team, they adjusted SAGE to perform the multiplication in the
conventional way using CSR format, which roughly halved the cost computation and local copies in SAGE’s
conjugant gradient solver[8].
Performance measurements of the CSR-based sparse matrix vector product code shown in Figure 2 on

several hardware platforms showed that it was less efficient than expected. An analysis of the assembly code
generated by SGI’s MIPSPro Fortran 90 compiler (version 7.3.1.3m, -O3 optimization) for this CSR-based
sparse matrix vector product code showed that while memory references issue at 100% of the peak rate in
the inner loop, in the outer loop they issue at only 41% of the peak rate. Using SAGE’s timing c sparse
matrix, we found that on average a floating point operation completes every 7.2 cycles with this code on a
MIPS processor. On an Itanium, performance is even worse, with a floating-point operation completing only
every 13.6 cycles.
In an effort to understand the relative contribution of the outer loop to overall performance, we generated

histograms of the matrix row lengths for the SAGE timing c and timing b test cases, as shown in Table 1.
These measurements show that SAGE’s sparse matrices have very short row lengths, implying that a signif-
icant fraction of time in the vector multiplication routine will be spent in the outer loop or in fill and drain
code surrounding a software-pipelined inner loop. In the next section, we describe an approach that exploits
the structure of these matrices to address this problem.



2 9 41 23643 3

.1 9.5 .7 4.2-.3.2 3.1

12 31 7

1 3

2 3

cols

nz

length

row

enstart . . .

. . .

. . .

. . .

. . .

Figure 3: Length-grouped Compressed Sparse Row (L-CSR) format.

3 Approach

Besides the problem of short rows, the performance of CSR-based sparse matrix vector product code, as
shown in Figure 2, suffers from a more fundamental problem: each multiply-add in the inner loop depends
on the value computed by the previous iteration. Since floating-point operations on modern microprocessors
are multi-stage pipelined operations, this dependence between iterations prevents the floating-point pipeline
from filling, even with unrolling. To improve pipeline utilization in dense matrix codes that have a recurrence
in the inner loop, the unroll-and-jam transformation [2] is often used.
Applying unroll-and-jam, also known as loop jamming, to a loop nest involves unrolling an outer loop

and fusing the multiple inner loop bodies that result. This transformation has three potential benefits: (1)
it increases the size of inner loop bodies to aid in optimization and reduce loop overhead, (2) it can increase
floating point pipeline utilization by interleaving the computation of multiple independent recurrences [4],
and (3) in dense matrix computations, it can increase close temporal reuse, some of which can then be
converted into register reuse by applying scalar replacement [3, 5].
Unroll-and-jam, of course, cannot be applied if the inner loop bodies that result from unrolling cannot

legally be fused. Thus, it cannot be employed directly to improve the efficiency of our CSR-based matrix
vector product computation shown in Figure 2. If we unrolled the outer loop over rows, it would not be legal
to fuse the multiple inner loop bodies that result because their rows may be of different lengths. However,
the histograms of SAGE’s sparse matrices shown in Table 1 show that besides having short rows, the rows
generally have one of a small number of frequently occuring lengths. If we reorganized the matrix so that
rows with the same length were together, then we could unroll and jam the sparse matrix vector product
loop nest to interleave the product computations for a group of rows of the same length.
We introduce Length-grouped CSR (L-CSR), a new sparse matrix representation that enables us to

apply unroll-and-jam to a CSR-style sparse matrix vector product. Figure 3 shows the structure of this
representation. Like CSR format, L-CSR contains a pair of vectors cols and nz that contain, respectively,
the column index and value of each non-zero value in the matrix. As in CSR, a matrix row is represented by
a contiguous sequence of entries in cols and nz. However, in L-CSR, rows are grouped by length, whereas
in CSR rows appear in normal matrix order. In L-CSR, the row vector and a vector of (length,lenstart)
pairs substitute for the vector rowstart in CSR. Each entry in row indicates the matrix row that corresponds
to a contiguous sequence of elements in cols and nz. A (length,lenstart) pair represents a group of rows
of a particular length; length is the row length and lenstart is the index in row where rows of that length
begin. The offset of the first row in a length group in cols and nz can be determined from the length and
number of rows of in length groups to the left of the current group in the pair vector.
Figure 4 shows machine-generated code for performing a sparse matrix vector multiply using L-CSR

format. It exploits the L-CSR representation by applying unroll-and-jam. The code shown was generated
using an unroll-and-jam factor of 2. Lines 32–43 show unroll-and-jammed code for handling pairs of rows
at a time. Interleaving the computation for multiple rows leads to better floating point pipeline utilization.
Lines 47–54 show code for any leftover rows that can’t be handled in bundles in the unroll-and-jammed loop.
When rows of some particular short length occur with high frequency, it may be more efficient to entirely



1 subroutine csrl_mvmult(csrl_nlengths, csrl_lengths, csrl_rowindex, csrl_cols, csrl_nz, x, r)

2 use define_kind

3 implicit none

4 ! --------- arguments ----------

5 integer :: csrl_nlengths, csrl_lengths(2,*), csrl_rowindex(*), csrl_cols(*)

6 real(REAL8) :: csrl_nz(*), x(*), r(*)

7 ! ------- local variables ------

8 integer, parameter :: ROWLEN=1, GROUPSTART=2

9 integer :: col

10 integer :: len, row, rowlen, rowofnextlen

11 integer :: firstrow, lastrow, i

12 real(REAL8) :: val0, val1

13 col = 1

14 do len = 1, csrl_nlengths

15 firstrow = csrl_lengths(GROUP_START,len)

16 rowlen = csrl_lengths(ROW_LENGTH,len)

17 lastrow = csrl_lengths(GROUP_START,len+1) - 1

18 if (lastrow .ge. firstrow + 1) then

19 if (rowlen .eq. 2) then ! unrolled code for 2 rows of length 2

20 do row = firstrow, lastrow - 1, 2 ! compute dot product for 2 rows of length 2

21 val0 = csrl_nz(col) * x(csrl_cols(col))

22 val1 = csrl_nz(col + 2) * x(csrl_cols(col + 2))

23 col = col + 1

24 val0 = val0 + csrl_nz(col) * x(csrl_cols(col))

25 val1 = val1 + csrl_nz(col + 2) * x(csrl_cols(col + 2))

26 col = col + 1

27 r(csrl_rowindex(row)) = val0

28 r(csrl_rowindex(row + 1)) = val1

29 col = col + 2

30 enddo

31 else

32 do row = firstrow, lastrow - 1, 2 ! handle 2 rows at a time

33 val0 = 0.0

34 val1 = 0.0

35 do i = 1, rowlen ! compute dot product for 2 rows of any length

36 val0 = val0 + csrl_nz(col) * x(csrl_cols(col))

37 val1 = val1 + csrl_nz(col + rowlen) * x(csrl_cols(col + rowlen))

38 col = col + 1

39 enddo

40 r(csrl_rowindex(row)) = val0

41 r(csrl_rowindex(row + 1)) = val1

42 col = col + 1 * rowlen

43 enddo

44 endif

45 firstrow = row

46 endif

47 do row = firstrow, lastrow ! for any number of rows

48 val0 = 0.0

49 do i = 1, rowlen ! compute dot product for a row of any length

50 val0 = val0 + csrl_nz(col) * x(csrl_cols(col))

51 col = col + 1

52 enddo

53 r(csrl_rowindex(row)) = val0

54 enddo

55 enddo

56 end subroutine csrl_mvmult

Figure 4: Machine-generated sparse matrix vector multiplication using LCSR format with unroll-and-jam
factor of 2 and special case fully-unrolled code for rows of length 2.



unroll the inner loop over elements in a row. Lines 20–30 show special-case code for handling rows of length
2. In general, special-case, fully-unrolled code can be generated for any small set of short row lengths.
To generate a tailored code for L-CSR matrix vector product for SAGE’s sparse matrices, we generated

special-case code for rows of length 1, 6, 7 and 10. Table 1 shows us that in SAGE’s sparse matrices, these
lengths account for over 97% of the rows and also contain 97% of the non-zeroes. The high frequency of
these lengths in our two sample matrices is not an accident. In SAGE’s hexahedral mesh, a typical cell
depends upon itself and a pair of adjacent cells along each coordinate dimension; this results in a sparse
matrix row of length 7. Rows of length less than 7 correspond to cells in various configurations along the
domain boundary. Rows of length ten correspond to a typical cell that has an extra three neighbors on one
side because a neighboring cell has been cut into octants by adaptation. In the next section, we compare
the performance of CSR matrix vector product with code for an L-CSR matrix vector product using an
unroll-and-jam factor of 4 (it handles bundles of 5 rows at a time) with special case code for rows of length
1, 6, 7 and 10.
There are three disadvantages of using an L-CSR representation. First, L-CSR format is not a random-

access representation: the index in cols and nz where each row starts is computed incrementally from the
start position and length of the prior row. Second, since rows are reordered by length in L-CSR format, the
reordering could reduce access locality of x since it will tend to move non-zeroes away from the diagonal of
the sparse matrix (assuming that the matrix was ordered so they were near the diagonal originally). Third,
writes into result vector using L-CSR format may no longer be stride one. Our experiments in the next
section show that for SAGE’s sparse matrices, the benefits of unroll-and-jam and special-case full unrolling
using L-CSR outweigh these potential costs.

4 Experimental Results

In this section, we describe an experimental evaluation of sparse matrix vector multiplication using CSR and
L-CSR formats of sparse matrices from SAGE’s timing b and timing c sample problems. In Section 4.1,
we describe our measurement methodology. In Section 4.2, we briefly describe the hardware platforms used
for our experiments. Our findings are presented in Sections 4.3 and Section 4.4, which, respectively, describe
experiments on a collection of hardware platforms and results of detailed simulations.

4.1 Methodology

On each hardware platform, we measured 100 iterations of sparse matrix vector multiplication using each
strategy. We took certain precautions to ensure that our measurements were not contaminated by con-
founding effects. First, cache conflicts can be exacerbated when arrays used in the same loop are placed in
non-consecutive memory locations. To avoid this problem, for each experiment we allocated all components
of a sparse matrix data structure, along with the input and output vectors that would be used with them, at
the same point and placed them consecutively in memory. Second, the first iteration of a loop performing a
memory-intensive computation may suffer performance penalties for faulting data into caches from memory
and priming the translation lookaside buffer (TLB) with necessary page translations. To ensure that such
effects didn’t skew our results, we performed one iteration of a sparse matrix vector product computation
to warm the memory system immediately before performing a timing test on multiple iterations of the
computation.
Experiments that attempted to exploit the symmetry of symmetric sparse matrices to improve perfor-

mance yielded lower performance than L-CSR. We explored a sparse symmetric representation that explicitly
represented only the lower or upper triangular portion of a sparse matrix in CSR format. Sparse matrix
vector multiply with such a representation incurs additional overhead because when processing each (row,
col) pair, it must load, update, and store result(col) as well as result(row). This has the overall effect
that each entry in the result vector is updated multiple times rather than computed in its entirety and stored
only once, yielding lower performance.
Sparse matrix vector multiplication involves computing the dot product of each row of the matrix and

the input vector. In the most straightforward case, this operation involves one floating-point multiplication



and one addition per row element. We computed “useful floating point operations per second” as twice
the number of non-zeroes in the matrix times the number of iterations, divided by the CPU time taken by
the matrix multiplication. This counts the rate of essential floating-point instructions while disregarding
non-productive operations such as register to register copies of floating point values. The higher the useful
floating-point operations per second, the more efficient the matrix vector product computation.
For comparison with CSR and L-CSR strategies, we also measured sparse matrix vector product compu-

tations using Im and Yelick’s Sparsity package for register and cache blocking [11, 10]. Our study of Sparsity
using SAGE’s timing c matrix showed that Sparsity’s exhaustive two-dimensional search of tile sizes (reg-
ister blocking from 1x1 to 12x12 and cache blocking in powers of two from 1x1 to 65536x65536) found no
cache or register blocking size that improved performance. We believe that cache and register blocking were
ineffective for SAGE’s sparse matrices because they lack patterns of local density; the majority of non-zero
values in the matrices are clustered near the diagonal, with a few rows along outlying diagonals.
We also compared our results with that of IBM’s sparse matrix vector multiplication routine DSMMX

from its Engineering and Scientific Subroutine Library (ESSL). In DSMMX, the sparse matrix is stored in a
form known as the Ellpack-Itpack format [14]. In this form, the matrix is stored in a pair of two-dimensional
panels whose major dimension size is the number of rows and whose minor dimension size is the maximum
number of non-zeroes per row. One panel holds the column indices; the second holds the non-zero values.
The fixed width of the panels is an advantage, but if most rows are not near the maximum length, the large
number of zero values in the panel leads to inefficient memory usage and computation. Results obtained
with DSMMX are presented in Section 4.3.

4.2 Hardware Platforms

Below we enumerate architectures used in our experiments. On each platform, we performed experiments
on a single processor.

• Compaq ES40 containing four 667MHz Compaq Alpha EV6.7 (21264A) processors. An EV6.7 processor
can issue up to four instructions per cycle, which may include at most two memory accesses and one
floating-point multiply-accumulate. Floating-point arithmetic operations have a 4-cycle latency. The
ES40’s memory hierarchy consists of a 64KB 2-way set associative primary cache and an 8-MB Dual
Data Rate cache. Primary cache latency is three cycles for integer loads and four cycles for floating-
point loads, while the latencies to the secondary cache and memory are 12 and 80 cycles, respectively.
Code was compiled Compaq C V6.3 with optimizations “-O3 -arch ev67”. Performance results were
measured using uprofile.

• IBM SP 2 containing 16 375MHz IBM Power3-II processors. Each Power3-II can issue 8 instructions
per cycle including at most 2 memory accesses and 2 floating-point instructions. Each processor has a
64KB L1 data cache and an 8MB L2 cache. Code was compiled IBM’s xlf90 and xlc compilers using
optimization level -O5. Performance results were measured using the PAPI interface to hardware
performance counters.

• SGI Origin 2000 containing 16 300MHz MIPS R12000 processors. Each node in the system con-
tains a pair of processors, which share an 8MB unified secondary cache. Each R12000 can issue four
instructions per cycle, which may include at most one memory access and one floating-point multiply-
accumulate. Each processor has a 32KB 2-way set associative primary cache. Latency penalties for
L1 and L2 misses are approximately 8 and 100 cycles each. Code was compiled with MIPSpro Fortran
and C V7.3.1.3m using optimizations “-O3 -mips4 -r12000”. Performance results were measured with
SpeedShop.

• A single-processor Itanium workstation. A first-generation Itanium can execute one three-instruction
VLIW bundle per cycle. It has a 32Kb 4-way set-associative L1 cache and a 96K 6-way set-associative
L2 cache. Code was compiled with Intel’s efc and ecc with optimization level “-O3”. Performance
results were measured using the PAPI interface to hardware performance counters.



Cycles Graduated Instructions Graduated FP Instructions

CSR L-CSR % decrease CSR L-CSR % decrease CSR L-CSR % decrease

Itanium 1.36e+9 5.97e+8 56.0% 1.27e+9 5.40e+8 57.6% 1.01e+8 8.65e+7 14.1%
MIPS 3.35e+8 2.99e+8 10.9% 5.40e+8 3.17e+8 41.3% 4.67e+7 4.67e+7 0.154%
Alpha 4.96e+8 2.97e+8 40.2% 5.71e+8 3.20e+8 40.0% - - -
Power3-II 3.37e+8 1.96e+8 41.9% 5.53e+8 2.59e+8 53.1% 1.03e+8 4.75e+7 53.9%

Table 2: Performance of sparse matrix vector multiplication using SAGE’s timing c sparse matrix in Com-
pressed Sparse Row format and Length-grouped Compressed Sparse Row format. Results are for 100 itera-
tions.

Timing-B matrix Timing-C matrix

CSR L-CSR CSR L-CSR

Itanium 69 160 55 123
MIPS 94 109 86 96
Alpha 160 254 140 208
Power3 118 235 103 177

Table 3: Millions of useful floating-point operations per second achieved for SAGE timing b and timing c
test cases.

4.3 Hardware Performance Results

Table 2 compares raw measurements from hardware performance counters on each architecture for 100
iterations of a sparse matrix vector product using SAGE’s timing c matrix in CSR or L-CSR format. The
L-CSR code used in these experiments was tailored for SAGE’s matrices as described in Section 3. Our
results show that using an L-CSR sparse matrix vector multiply improves performance on all hardware
platforms. The smallest improvement was roughly 11% on the MIPS R12000. On the Alpha and Power3-II,
improvements of 40% were measured. On the Itanium performance improved by more than a factor of 2.
Table 2 shows that the L-CSR code executed 40–58% fewer instructions than the CSR code. Some of this was
a reduction in useless floating point register-to-register copies. In the next section, we present simulations
that show that a significant part of the reduction comes from index arithmetic.
Table 3 reports useful MFLOP rates (excluding useless register-to-register copies) measured on each

of the platforms. These results show that sparse matrix vector multiplication using the L-CSR format
substantially improved performance on all the platforms we studied for both the timing b and timing c
test cases. Although the previous table compared detailed performance counter measurements only for
SAGE’s timing c sample input, this table shows that improvements with SAGE’s timing b matrix are even
better, yielding a factor of two improvement on Power3 and a factor of 2.3 on Itanium. The improvement
on Alpha is 58%. Only the MIPS fails to achieve a substantial boost, improving only 16%. Using IBM’s
ESSL sparse matrix vector product routine DSMMX, on the Power3 we achieved only 46 MFLOPS with
timing c and 40 MFLOPS with timing b. Both CSR and L-CSR routines dominated this performance by
a wide margin.
We performed a series of experiments to evaluate the impact of (1) loop unrolling to interleave computation

of multiple rows and (2) fully-unrolled special case code for short, common row lengths. These results
are shown in detail in Table 4. We evaluated unrolling factors of 1 (no unrolling), 2, 4, 6, and 8, with
and without special case code for common row lengths. The results show that both optimizations yielded
important performance improvements. Loop unrolling to interleave computation over multiple rows improved
performance by a maximum of 25% on the Itanium and by a maximum of 17% on the Alpha. This unrolling
enabled the recurrences of different rows to be interleaved, which reduced memory stalls. Special-case fully-
unrolled code further improved performance. On the Alpha, performance with loop unrolling and special-
case code improved by a maximum of 29% over plain unrolled code. On the Itanium, the imorovement was
especially dramatic–a maximum of 116% over plain unrolled code. This full unrolling of short, common



No Special-case Code Special-case Code
Loop body copies 1 2 4 6 8 1 2 4 6 8

Itanium MFLOP/s 64 80 74 68 74 137 137 160 137 120

Alpha MFLOP/s 205 240 237 218 200 238 250 244 258 258

Table 4: Effect of special-case code (full loop unrolling for common row lengths) and interleaving computation
on multiple rows for L-CSR format matrix vector multiplication with the timing c matrix.

CSR L-CSR

ALU 3,634 849
Write 72 73
Read 1,475 1,479
Branch 684 16
FPU 1,007 866

Total 6,871 3,282

Table 5: Instructions counts of different types in the RSIM simulation for one iteration, in thousands of
instructions.

row lengths eliminated loop overhead and provided larger blocks of code for the compiler to optimize. Full
unrolling of small, short-trip loops was especially beneficial on the Itanium. On the Itanium, filling and
draining of software pipelines are done in the main loop body, using conditional execution, rather than in
shorter, separate blocks before and after the loop. Since filling and draining take as much time as several
iterations of the main loop, fill and drain overhead cause major inefficiencies in software-pipelined loops with
low trip counts.

4.4 Simulation Results

We used the Rice Simulator for ILP Multiprocessors (RSIM) [15] to measure the dynamic flow of instructions
in the processor and to get more detailed data about memory system utilization. RSIM is an execution-
driven simulator that uses executable files compiled for the SPARC architecture. It models both superscalar
processor behavior and multi-level memory hierarchies to a high degree of detail. The RSIM processor model
takes advantage of instruction-level parallelism (ILP) in a way similar to modern superscalar processors.
RSIM is commonly used to model multiprocessor systems; we used it in single-processor mode. We used the
default RSIM parameters for single-processor simulation. This configuration includes two ALUs, two FPUs,
and two address generation units; four instruction retire slots; and eight register windows. The memory
system includes a 16kB write-through L1 cache with 1-cycle latency, 64kB four-way set-associative L2 cache
with 5-cycle latency, and DRAM with 18-cycle latency. These are generally consistent with a 300-MHz
SPARC processor. RSIM enabled us to precisely measure dynamic instruction counts, functional unit usage,
and memory performance.
Table 5 shows the frequency of types of instructions comparing simulations of a single iteration of CSR

and L-CSR on SAGE’s timing c matrix. Our simulation results show a dramatic reduction in the number
of total instructions executed. Table 5 shows that ALU instructions account for more than 50% of the
total instructions in the RSIM simulation of CSR multiplication. In matrix vector product computations,
only floating-point and and memory operations are useful work. ALU instructions are overhead that can
be eliminated. L-CSR multiplication graduated 72% fewer ALU instructions than CSR. Floating-point and
branch instructions were also eliminated. The principal difference in floating point operations observed
here was due to the lack of floating point register copies in L-CSR and slightly fewer useful floating point
operations needed (as explained in Section 4.1).
Reductions in total instruction count do not necessarily improve running time. In a processor with

instruction-level parallelism, code with many instructions that can be parallelized may actually execute



CSR L-CSR

ALU stall 39 1
Write stall 0 1
Read stall 2,345 2,476
Branch stall 31 0
FPU stall 457 84
Busy 1,718 820

Total stall 2,872 2,562

Total 4,590 3,384

Table 6: Breakdown of time spent in the RSIM simulation, in thousands of cycles, for one iteration.

faster than code with a few non-parallelizable instructions. To understand how our simulations differ in
performance, we measured detailed cycle usage in addition to instruction counts. RSIM divides the processor
time into parts: time spent handling different kinds of stalls, such as cache misses and interlocks, and busy
time spent graduating instructions at the processor’s maximum rate. Table 6 shows the breakdown of time
spent during each simulation.
Our intuition was that the performance of sparse matrix vector multiplication should be limited by memory

stalls since there is no temporal locality in loading elements of the sparse matrix. In Table 6, we see that
read stalls are the dominant stall cost. The memory stall cost measured for L-CSR was 10.9% than that
for CSR. A slight increase was expected. CSR achieves good spatial locality for the input vector as the
multiplication progresses through the rows because most of the non-zero values are near the diagonal of the
matrix. This locality property can be destroyed by the length-based row reordering performed by L-CSR.
In measurements of memory hierarchy utilization on our hardware systems, we found that L-CSR decreases
the rate of first level and second level cache misses but increases the rate of third level cache misses and
TLB misses on the Itanium. On the MIPS, L-CSR increases the rate of translation lookaside buffer (TLB)
misses and both primary and secondary cache misses relative to CSR.
Table 6 shows that “busy time” for CSR is more than double that for L-CSR. Busy time is a sign that

the processor is bogged down with ALU overhead, causing the memory system to be used at less than full
capacity. In CSR multiplication, the processor was busy 37.43% of the time. L-CSR reduced the busy time
by 74% while decreasing total stall time by 7%. The reduction of instructions issued and the dramatic
reduction in busy time seems to results from the fact that L-CSR code presents larger loop bodies to the
compiler, revealing more opportunity to reduce arithmetic overhead.
L-CSR reduced the number of floating-point instructions as well as ALU instructions. In the SPARC/RSIM

assembly code for CSR sparse matrix vector multiplication, the floating point operations include the follow-
ing: (1) for each row, loading a zero into an accumulator register, (2) for each row element, multiplying an
element of the matrix by an element of the input vector, (3) for each element, adding the product computed
in step 2 to the accumulator register, and (4) performing register-to-register moves. In L-CSR, since the row
length is known ahead of time, the accumulator register can be initialized with the first value of each row
instead of zero. In this way, steps 1 and 3 can be completely eliminated for the first element of each row. For
matrices with small average row lengths, the elimination of a few instructions per row can be quite signifi-
cant. The unroll-and-jam optimization enabled by L-CSR can also eliminate many of the register-to-register
move instructions in step 4, though this effect was negligible on the SPARC/RSIM platform. The details
of eliminating floating-point operations differed greatly across different platforms. On the MIPS, almost
no floating-point instructions could be eliminated. On the Power3, however, over 50% of the floating-point
instructions could be eliminated; most were register-to-register moves.
Branch prediction in CSR was good enough to nearly eliminate branch stall time. Therefore, while L-

CSR’s unroll-and-jam in the outer loop and full unrolling of certain inner loops eliminated the vast majority
of CSR’s branch instructions, the impact of this improvement was negligible in processor time analysis.
In addition to reducing the number of instructions, L-CSR improves performance by overlapping instruc-

tions to fill the floating-point pipeline. With the unroll-and-jam optimization, floating-point operations in
several consecutive rows can be interleaved, reducing floating-point stalls. In RSIM, floating-point stall time



was reduced by 82%.

5 Related Work

A variety of different data and computation reorganization strategies have been explored in an effort to
increase the performance of sparse matrix vector product computations.
For matrices where the maximum number of non-zeroes in any row is not large and the number of non-

zeroes per row fairly uniform, the Ellpack-Itpack format [14], which collapses sparse matrices into a pair of
dense matrices of size number of rows (nrows) by the maximum number of non-zeroes (maxnz) per row; one
matrix contains coefficients and the other column indices. If the number of non-zeroes per row is not fairly
uniform, then this representation can waste a lot of computation and memory bandwidth on zero-fill entries.
Paolini and Radicati di Brozolo [16] and Saad [17] proposed similar variants of the Ellpack-Itpack data

structure known as jagged diagonals. This data structure reorders rows by length and then stores a dense
vector with a column entry from each row. Each column goes from the first (longest) row down until the row
just prior to the one in which the first non-zero appears in this column. While this representation facilitates
vectorization along columns, for sparse matrix vector multiply it sacrifices reuse of the output vector, which
it loads and updates repeatedly as each diagonal is processed.
Agarwal, Gustavson, and Zubair [1] proposed a feature extraction based algorithm to extract certain

kinds of regular structure so it can be processed separately in a more efficient manner. They dissect the
matrix into three separate representations: one for nearly dense blocks, one for nearly dense diagonals, and
one for the remaining non-zeroes. Once the nearly dense blocks and diagonals are extracted, the remaining
rows of non-zero elements are sorted by row length and stored in a “ladder scheme” matrix format similar
to the Ellpack-Itpack format. Unlike Itpack, however, this format reduces zero padding by partitioning the
rows with a constant number of rows per partition. The width of each partition is the maximum row length
within the partition. Thus, the ladder scheme may still result in excessive zero padding when the difference
between row lengths within a partition is large, though the amount of padding is almost always much less
than that of Itpack.
Das et. al. [6] applied a breadth-first strategy known as Reverse Cuthill-McKee [7] to reorder elements in

an unstructured mesh. Applying this reordering, originally devised to minimize the bandwidth and profile
of sparse matrices, has the effect of improving the locality of indirect accesses to the input vector when
computing its product with the sparse matrix. The reordering improves both cache and TLB locality.
Im and Yelick designed the Sparsity system, which tiles the matrix into uniform block sizes rather than

searching for dense blocks within a matrix. An exhaustive search with speed profiling is used to find the
optimal block size. This performs well for some patterns of non-zeroes, but tiling is less effective on matrices
with irregular non-zero patterns.
Toledo used a combination of bandwidth reduction, blocking, and prefetching to improve performance of

sparse matrix vector multiplication on RISC processors. A blocking strategy is used in which the matrix is
scanned for completely dense 1x2 and 2x2 blocks. The intent was to find as many opportunities for blocking
as possible, even with small blocks, rather than finding a small number of large semi-dense blocks. This
strategy reduces the number of load instructions required, since some row and column index loads and input
vector loads are made unnecessary. The number of arithmetic instructions, however, remains the same or
increased with this system. For matrices with small average row length, the large number of arithmetic
instructions prevents the memory system from being used to full capacity. It seems likely, therefore, that
a blocking strategy such as Toledo’s combined with length reordering could reduce both arithmetic and
memory instructions, perhaps improving performance beyond either approach taken alone.
Keyes et. al. [9] describe a strategy for improving performance for a code that needs to multiply a sparse

matrix by multiple independent vectors. By multiplying a sparse matrix by multiple independent vectors
at a time, the sparse matrix data structure components can be reused in registers rather than streaming
them through the memory hierarchy once per vector. Like our unroll-and-jam strategy, interleaving the
computations on multiple independent vectors boosts floating point pipeline efficiency.



6 Conclusions

Previous research has shown that sparse matrix vector product computations can be accelerated by exploiting
local patterns of density to enable register blocking [18, 10, 11]. Register blocking strategies for sparse matrix
vector product computations reduce the need to load indirection vectors and provide temporal register reuse
of both non-zero matrix elements and the corresponding vector elements by which they are multiplied.
Memory hierarchy blocking for cache and TLB reuse has also been shown to be profitable [10].
In this paper, we described a new technique for accelerating sparse matrix vector product calculations

for matrices in which rows occur in a small number of distinct lengths. Matrices with this property are
characteristic of those that arise in SAGE, an important code that uses cell-by-cell adaptive refinement of
a structured hexahedral mesh. Reorganizing the matrix representation to group together rows of identical
length enabled us to apply unroll-and-jam to the sparse matrix vector product computation. This format
yielded performance improvements from 11% to a factor of 2.3 for the platforms we tested.
Preliminary experiments on general sparse matrices from the NIST matrix market catalogue [13] showed

that having a high frequency of rows with a small number of fixed lengths is not a common property.
Thus, we expect that our strategy will be most useful for matrices that arise out of codes like SAGE
that perform structured adaptive mesh refinement. Despite this somewhat narrow range of applicability,
our technique is significant because of its benefits for long-running adaptive computations with SAGE and
SAGE’s applicability to a broad class of problems.

References

[1] R. Agarwal, F. Gustavson, and M. Zubair. A high performance algorithm using pre-processing for the sparse
matrix vector multiplication. In Proceedings of Supercomputing ’92, Minneapolis, MN, Nov. 1992.

[2] F. Allen and J. Cocke. A catalogue of optimizing transformations. In J. Rustin, editor, Design and Optimization
of Compilers. Prentice-Hall, 1972.

[3] D. Callahan, S. Carr, and K. Kennedy. Improving register allocation for subscripted variables. In Proceedings of
the SIGPLAN ’90 Conference on Programming Language Design and Implementation, White Plains, NY, June
1990.

[4] D. Callahan, J. Cocke, and K. Kennedy. Estimating interlock and improving balance for pipelined machines.
Journal of Parallel and Distributed Computing, 5(4):334–358, Aug. 1988.

[5] S. Carr and K. Kennedy. Improving the ratio of memory operations to floating-point operations in loops. ACM
Transactions on Programming Languages and Systems, 16(6):1768–1810, 1994.

[6] R. Das, D. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. The design and implementation of a parallel
unstructured Euler solver using software primitives, AIAA-92-0562. In Proceedings of the 30th Aerospace Sciences
Meeting. AIAA, Jan. 1992.

[7] A. George and G. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Englewood
Cliffs, NJ, 1981.

[8] M. Gittings. Personal communication, Mar. 2002.

[9] W. Gropp, D. Kaushik, D. Keyes, and B. Smith. Improving the performance of sparse matrix-vector multipli-
cation by blocking. Talk presented at SIAM Annual Meeting, July 2000, San Juan, Puerto Rico. Available as
http://www.icase.edu/~keyes/multivec.pdf.

[10] E.-J. Im. Optimizing the Performance of Sparse Matrix-Vector Multiplication. PhD thesis, University of Cali-
fornia Berkeley, May 2000.

[11] E.-J. Im and K. A. Yelick. Optimizing sparse matrix computations for register reuse in SPARSITY. In V. N.
Alexandrov, J. Dongarra, B. A. Juliano, R. S. Renner, and C. J. K. Tan, editors, Proceedings of International
Conference on Computational Science, volume 2073 of Lecture Notes in Computer Science, pages 127–136.
Springer, 2001.

[12] D. Kerbyson, H. Alme, A. Hoisie, F. Petrini, H. Wasserman, and M. Gittings. Predictive Performance and
Scalability Modeling of a Large-Scale Application. In Supercomputing 2001, Denver, CO, November 2001.

[13] N. I. of Standards and Technology. Matrix market. http://math.nist.gov/MatrixMarket.



[14] T. Oppe, W. Joubert, and D. Kinkaid. NSPCG user’s guide. Technical report, Center for Numerical Analysis,
The University of Texas at Austin, Dec. 1988.

[15] V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM: An Execution-Driven Simulator for ILP-Based Shared-
Memory Multiprocessors and Uniprocessors. In Proceedings of the Third Workshop on Computer Architecture
Education, February 1997. Also appears in IEEE TCCA Newsletter, October 1997.

[16] G. Paolini and G. R. di Brozolo. Data structures to vectorize CG algorithms for general sparsity patterns. BIT,
29:703–718, 1989.

[17] Y. Saad. Krylov subspace methods on supercomputers. Technical Report 88.40, Research Institute for Advanced
Computer Science, NASA Ames Research Center, Dec. 1988.

[18] S. Toledo. Improving the memory-system performance of sparse-matrix vector multiplication. IBM Journal of
Research and Development, 41(6):711–725, 1997.


