
Making TCP Viable as a High Performance Computing Protocol
�

Patricia Gilfeather and Arthur B. Maccabe
Scalable Systems Lab

Department of Computer Science
University of New Mexico

pfeather@cs.unm.edu maccabe@cs.unm.edu

Abstract

Generally, TCP is reputed to be too slow and bloated
to be useful in high performance computing. However, it
has very definite advantages over proprietary or special-
ized protocols and could potentially be very useful in high
performance computing. We researched different implemen-
tations of MPI over TCP to distinguish between the limita-
tions of TCP and the limitations of implementations of MPI
over TCP. Next, we describe a new approach to address-
ing the limitations of TCP: splintering. In contrast to OS
bypass, the principle of splintering isn’t that the operating
system shouldn’t be used, but that it should be used effec-
tively. Finally, we describe the approach we will take in
splintering processing for TCP packets.

1 Introduction

Clusters built from commodity hardware and software
have several advantages over more traditional supercomput-
ers. Commodity clusters are cheap and ubiquitous. They
are easier to design, program and maintain. However, as
high-speed networks reach 10Gb/s and processors reach 2–
3GHz, new commodity clusters are unable to harness in-
creases in power.

It is generally perceived that commodity protocols, like
TCP, are themselves inefficient for use in large high-speed
clusters. However, current implementation inefficiencies at
higher level message passing layers or in the protocol stacks
themselves hide any theoretical bottlenecks of the protocol.
We tested several MPI implementations and found that none
of the perceived difficulties with the TCP protocol were ev-
ident at the MPI layer.

Nonetheless, there are inefficiencies in the implemen-
tation of TCP that need to be addressed before TCP can

�
Los Alamos Computer Science Institute SC R71700H-29200001 and

Albuquerque High Performance Computing Center through IBM SUR

be considered a good wire-level or end-to-end messaging
layer for high-performance computing. Namely, we must
address the memory copy from kernel to user space, the in-
terrupt and scheduling of the kernel and the state necessary
for maintenance of connections before we can consider TCP
a viable solution.

One of the most effective tools for increasing the effi-
ciency of high-performance computing has been the use of
programmable Network Interface Cards (NICs). Offloading
work to a programmable NIC has been an important tool in
facilitating OS bypass. Improvements in networking tech-
nology have revealed the OS as a significant bottleneck in
our ability to deliver low latency and high bandwidth to ap-
plications. The goal of OS bypass is to remove the OS from
the communication path, thus eliminating costly interrupts
and data copies between kernel space and user space. Ul-
timately, the OS must be involved in communication. As
a minimum, the OS needs to be involved with the memory
used for communication, e.g., validating the use of memory
and making sure that pages are “pinned.”

Instead of using bypass as a way to disengage the OS, our
approach is to determine which functionality in the commu-
nication protocol stack presents the most benefits when of-
floaded. As we will illustrate later in the paper, some func-
tions, like fragmentation and defragmentation or IP check-
sum, can be offloaded with positive results. However, other
functions, like error handling, gain little from offloading
and consume valuable NIC resources. We describe our pro-
posal to splinter TCP, a commodity protocol stack. Splin-
tering is the process of determining which functionality to
extract from the protocol stack and distributing it. By splin-
tering the functionality of the TCP/IP stack, we expect to
retain the advantages of commodity protocols and gain the
performance efficiencies of appropriate offloading.

Most importantly, splintering the communication stack
means that communication rarely increases operating sys-
tem activity. In other words, the act of communication
doesn’t cause the operating system to be invoked. First,
we will discuss the advantages of commodity components.

1

Second, we will discuss operating system bypass and its
successes and disadvantages. Third, we will introduce
splintering and finally, we will propose a method for splin-
tering the TCP stack.

2 Advantages of Commodity Components

Commodity-based hardware and software, including
communication protocols, provide several advantages.
They have been extensively developed and tested, they are
highly interoperable, and they represent inexpensive alter-
natives to specialized solutions. The cost advantages for
the commodity approach reaches far beyond the savings re-
alized at time of purchase. Often code has already been
created in the community so there is little to no develop-
ment cost. In the remainder of this section, we discuss the
advantages of commodity-based hardware and communica-
tion protocols.

2.1 Hardware

Fast Ethernet is a great example of the trade-offs be-
tween inexpensive commodity hardware and more expen-
sive specialized solutions. While Fast Ethernet is very in-
expensive, it is capable of only 1/10th the bandwidth of
Myrinet[1]. Ethernet is, additionally, saddled with a very
small transmission unit (1500 bytes) which is becoming
more and more of a problem. In 1999, Gigabit Ethernet
offered bandwidth that was comparable to Myrinet, but the
cost for switches and NICs was high. In the last six months,
the price of Gigabit Ethernet NICs has dropped from around
$1000/NIC to $200/NIC[3, 5]. This is the true advantage of
commodity-based hardware. While Myrinet has out-paced
Gigabit Ethernet in performance, it does not promise near
the reductions in costs that we see when components be-
come a true commodity.

2.2 Network Layer Protocol

Internet Protocol (IP) is the ubiquitous network layer
protocol. IP routing is absolutely necessary to remain in-
teroperable in wide area networks. Additionally, IP routers
remain the most cost-effective hardware choice and the IP
routing mechanism is well-tested.

There are disadvantages to IP as well. IP is an old pro-
tocol and some of its assumptions are no longer valid. Gen-
erally, IP’s hierarchical, dynamic routing is inefficient al-
though LANs can maintain route table information and al-
leviate this weakness. Additionally, IP checksums reside in
the header rather than at the end of the packet so comput-
ing the checksum requires maintaining additional state[9].
Also, headers are of various size requiring a check of the
length field of each header.

Despite these difficulties, it is unlikely that any protocol
(with the possible exception of IPv6) will replace IP as the
commodity network layer protocol.

2.3 Transport Layer Protocols

TCP and its unreliable cousin User Datagram Protocol
(UDP) are the most common transport layer protocols used
today. TCP gives all of the advantages of a commodity pro-
tocol. Specifically, TCP is transparent to the layer above it,
in this case the application layer. Thousands of applications
are written based on the TCP protocol and interoperability
would be severely limited without support for TCP.

On the other hand, TCP contains a large amount of com-
munication processing overhead to administer flow control,
error discovery and correction, and to maintain connections.
Many of these services are unnecessary to the high-speed
network application. These networks are highly reliable
with little to no errors so the error detection and recovery
would be less intrusive if it were not on the main path for
all messages. Congestion control is maintained by the ap-
plication so its existence in the transport layer is redundant.

3 Actual Bottlenecks of MPI over TCP

The perceived problems of TCP are the advertised flow
control window and the slow start and three-way handshake
associated with connection startup. However, currently,
the implementation of high performance communication li-
braries hide any potential bottlenecks at the transport proto-
col layer.

We tested ping-pong latency over 100Mb/s Ethernet be-
tween two 933Mhz Intel Pentiums using Linux 2.4.2 and
a warmed cache. We tested the MPICH 1-2.3 imple-
mentation over TCP, the LAM implementation using UDP
against a raw ping-pong test with TCP sockets with the
TCP NODELAY option set.

The MPICH-1.23 implementation of MPI over TCP uses
abstract device interfaces to allow for various underlying
transport protocol layers. This makes the MPICH library
very portable. TCP connections are established as needed
meaning that there is a large variance in latency between
the first message passed between two nodes and the second
seen in Figure 1.

LAM MPI employs a user-level multi-process daemon
that provides message-passing outside of the kernel at the
user level using a UDP-based protocol. Because message-
passing occurs at the user level, the daemon must be sched-
uled and scheduling variance will create latency variance.
Figures 2 and 3 both show this latency variance.

Finally, the potential bottlenecks of TCP are not visible
in Figures 2 and 3. Here, MPICH, LAM and TCP all have

2

80

100

120

140

160

180

200

220

240

260

280

300

1 2 3 4 5 6 7 8 9 10

La
te

nc
y

(u
se

c)

Message number

MPICH
LAM
TCP

Figure 1. Ping-pong latency for MPICH, LAM
and TCP on 50 byte messages

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10

La
te

nc
y

(u
se

c)

Message number

MPICH
LAM
TCP

Figure 2. Ping-pong latency for MPICH, LAM
and TCP on 5000 byte messages

established connections between the two nodes. The differ-
ence in latency between the first and second messages ex-
hibited by MPICH is probably due to the library procuring
kernel buffers. On the other hand, the differences in latency
in LAM is probably due to scheduling of the LAM daemon.

4 Future Performance Enhancements

There are several solutions to the bottlenecks discussed
in the previous section. Researchers have implemented MPI
over other protocols and this has proved successful. Re-
searchers can also implement other message-passing proto-
cols over TCP. Finally, researchers can attempt to improve
the mapping between the MPI message-passing protocol
and the TCP protocol.

Implementations of MPI over other protocols like GM or

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5 6 7 8 9 10

La
te

nc
y

(u
se

c)

Message number

MPICH
LAM
TCP

Figure 3. Ping-pong latency for MPICH, LAM
and TCP on 36000 byte messages

Portals have generally been successful. However, these un-
derlying protocols and some implementations of TCP per-
form similarly with respect to bandwidth and latency[2].
This leads us to believe that the increase in performance of
MPI over other protocols could be due to a better implemen-
tation of MPI or to a better mapping between the message
passing library and the underlying protocol.

Figures 2 and 3 show a gap in performance between
the underlying protocol (TCP) and the implementation of
MPI. This gap is due in part to poor implementation of
the message-passing layer. However, some of this is over-
head associated with the MPI library. For example, MPI
matching is an expensive procedure which is performed re-
gardless of the needs of the application. MPI may not be
the message-passing paradigm of choice in the future. This
will become particularly true as clusters and supercomput-
ers grow into the hundreds of thousands of nodes.

Despite the shortcomings of MPI and its current imple-
mentations, one of the most obvious difficulties with most
current TCP stacks is that they reside wholly in the ker-
nel and contain overhead that is redundant with respect to
MPI. The mapping between MPI and TCP is poorly con-
ceived for high-performance computing. Namely, not only
is the socket API which assumes a pull protocol (as opposed
to a put protocol) inappropriate for use with sophisticated
message-passing libraries, but it is the only interface library
implementors have with the protocol. This does not allow
the flexibility necessary to take full advantage of the perfo-
mance opportunities of TCP.

For example, the interrupt into the kernel and the mem-
ory copy between kernel space and user space that is em-
ployed by most implementations of TCP may add too much
overhead to CPU sensitive applications, whereas the vari-
ance in latency that exists if connections are setup as needed

3

may be too much jitter for latency-sensitive applications.
Connection management implementations create too much
maintenance overhead, specifically, kernel buffers attached
to each open connection create drastic inefficiencies for ap-
plications running on extremely large clusters.

Our research does not include creating more efficient
implementations of MPI. Nor do we wish to enter the de-
bate regarding MPI’s efficacy as a message-passing proto-
col. Our research concentrates on pushing the capacities
of commodity protocols with respect to high-performance
computing. The research community needs a better im-
plementation of the TCP protocol itself. As we design a
new implementation of TCP, we must take into consider-
ation the various needs of applications. The design must
allow for hooks into the protocol stack so that applications
and message-passing libraries can tailor the TCP stack in
accordance to their particular performance needs.

Our goal is to create a flexible implementation of TCP
that allows applications or subsystems to tune TCP so that
its protocol and implementation bottlenecks are minimized.
We propose to do this by isolating or splintering small parts
of the functionality of the TCP stack and optimizing the
functionality by offloading it or moving it away from the
kernel. We begin our look at splintering by discussing oper-
ating system bypass and then contrasting this method with
splintering. Finally, we propose splintering specific func-
tionality of the TCP stack.

5 Operating System Bypass

Operating system bypass (OS bypass) was developed to
reduce latency by removing the host processor from the
common path of communication. Additionally, OS bypass
addresses the bottlenecks associated with memory copies
and frequent interrupts. In most instances, OS bypass is
achieved by moving OS policy onto the NIC and protocol
processing into user space.

OS bypass achieves lower latency by eliminating inter-
rupts and all copying of network data, including the fi-
nal copy from kernel memory to user memory. Although
this technique has been demonstrated successfully in some
cases, zero-copy to user space has yet to be proven gen-
erally useful in an operating system standard release. The
primary concern is that the overhead and special-casing in
the page cache necessary to manage the transition between
the two address spaces may exceed the overhead of a single
memory copy into a user buffer.

5.1 VIA

The virtual interface architecture (VIA) is one of the
best-known OS bypass solutions. VIA assigns a virtual NIC

in user space. A virtual interface is created for each connec-
tion (much like a socket) and each virtual interface contains
a send queue and a receive queue. The receive queue con-
tains descriptors with physical addresses. These physical
addresses are translated at initialization time and the mem-
ory pages are locked[8].

VIA decreases latency especially for small messages
since the overhead involved with managing buffers is not
counted in the latency. If the virtual interface is imple-
mented in user space, CPU overhead associated with com-
munication remains very high. If the virtual interface is
implemented on the NIC, the CPU overhead surprisingly
remains high since the application must still be invoked to
pull messages off of the queue.

OS bypass is achieved by moving data directly from the
NIC to application space. If the NIC knows where the ap-
plication expects a message, it can DMA data directly into
application space and avoid all memory copies. The appli-
cation either needs to tell the kernel where it wants a mes-
sage so the kernel can translate addresses and tell the NIC,
or the application must ask the kernel for an address trans-
lation and tell the NIC directly [8, 7].

No matter how the NIC gets information about memory
addresses, both the application and the kernel are involved.
First, the application must become active in order to control
addressing and this requires a context switch. Second, the
operating system must be active in order to perform address
translation which requires a trap into the kernel. Using OS
bypass, communication traffic still increases operating sys-
tem activity.

6 Splintering

The philosophy of splintering isn’t that the operating sys-
tem shouldn’t be used, but that it should be used effectively.
In the case of communication offload, the goal is to min-
imize the overhead associated with invoking the OS while
still enabling the OS to control communication.

6.1 Splintering IP

The IP stack has been successfully splintered in the past.
A great example of the splintering of the IP stack is check-
sum offloading. Many NICs will compute the checksum of
an IP packet during the DMA of data from the NIC to the
host processor.

Fragmentation and reassembly are tasks that are ex-
tremely well-suited for splintering. Their implementation is
possible on a reasonably powerful NIC such as the Acenic
and they are easy to separate from the rest of the IP stack.
This is accomplished by transparently accepting packets
larger than the real MTU of the link and fragmenting on

4

the card. Almost no modification of the driver is neces-
sary. Moreover, splintering IP fragmentation and reassem-
bly minimizes the overhead associated with invoking the
OS by increasing the size of the packet and should increase
the CPU availability for the application without sacrificing
bandwidth.

Figure 4 shows that offloading fragmentation and re-
assembly onto the NIC significantly increases the effective
utilization (bandwidth * availability) of the host. Effective
utilization increased because this method maintained band-
widths within about 10% of bandwidths using a 1500 byte
MTU but reduced the amount of time the host spent pro-
cessing communication by about 50%. In fact, offloading
fragementation and reassembly was more successful in re-
lieving the interrupt pressure bottleneck than the use of in-
terrupt coalescing or jumbo frames[4]

0

5

10

15

20

0 5000 10000 15000 20000 25000 30000

E
ffe

ct
iv

e
U

til
iz

at
io

n
[B

an
dw

id
th

(M
b/

s)
/C

P
U

 U
til

iz
at

io
n(

%
)]

Message length (bytes)

1500 MTU
32000 MTU

Figure 4. Effective utilization for unmodified
firmware at 1500 byte MTU and offloaded frag-
mentation with driver MTU of 32000 bytes

We first splintered the IP stack in an attempt to relieve the
interrupt pressure bottleneck associated with small frame
sizes (1500 bytes) and high-speed networks (1Gb/s). We
were able to implement fragmentation and reassembly on
the NIC to demonstrate that it is possible to drastically im-
pact the performance of a commodity protocol without sig-
nificantly compromising its advantages[4].

6.2 Splintering RMPP

A related project in the Scalable Systems Lab splin-
tered the reliable message passing protocol RMPP proto-
col (a simple RTS/CTS protocol) associated with the high-
performance message-passing protocol, Portals[6]. Fig 5
shows that offloading the receive portion of RMPP (essen-
tially, a DMA to user space rather than a DMA to kernel
space with no OS interrupt) increases the effective utiliza-

tion (bandwidth * availability). Furthermore, offloading
part of the send portion of the protocol (specifically the re-
ception of the CTS and the DMA of data from user space
rather than from kernel space) further increases the effective
utilization.

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000

B
an

dw
id

th
 (

M
B

/s
)

*
A

va
ila

bi
lit

y

Message Size (KB)

Offload Send and Receive
Offload Receive

Original

Figure 5. Effective utilization for RMPP

Regardless of the protocol, it is possible to allow the OS
control over resources. Here, the RTS and the sending of
the CTS remain in the OS. Appropriate offloading of small
parts of a protocol can increase CPU availability without
sacrificing bandwidth.

6.3 Splintering TCP

We have successfully splintered and offloaded part of the
IP stack to reduce the interrupt pressures and to increase the
effective utilization of compute nodes. Next, we will pro-
pose to splinter and offload part of the TCP stack in order to
reduce the communication costs associated with the proto-
col. Because we want to allow applications to tailor TCP to
fit their needs, we will propose three uses of the splintering
method to increase the efficiency of TCP. In addition, we
would like to see hooks or optimization levels that allow for
higher layers to choose between speed and safety or speed
and interoperability.

Figure 6 presents a graphical illustration of our approach
to splintering the processing associated with the TCP proto-
col. In this case we only illustrate the processing done while
receiving datagrams. In this illustration, solid lines indicate
the paths taken by datagrams, while dashed lines represent
control activities.

We start by considering the control path. In particular,
we assume that the application issues a socket read before
the data has arrived, i.e., a “pre-posted” read. Eventually,
after traversing several layers of libraries, this read is trans-
formed into a request that is passed to the operating sys-
tem. The OS can then build a descriptor for the application

5

receive
descriptor

receive
buffer

Operating System

Application

data

packet

header

socket read

NIC

Figure 6. The Splintered TCP Architecture

buffer. This descriptor will include physical page addresses
for the buffer. Moreover, as the OS builds this descriptor,
it can easily ensure that these pages will remain in memory
(i.e., they will be pinned) as long as the descriptor is active
in the NIC.

Now, we consider the handling of datagrams. When a
datagram arrives, the NIC first checks to see if the incom-
ing datagram is associated with a descriptor previously pro-
vided by the OS. If it finds such a descriptor, the NIC will
DMA the data portion of the datagram directly to the ap-
plication buffer, providing a true zero copy, and make the
header available to the OS. If the NIC does not find the
needed descriptor, it will simply make the entire datagram
available to the OS for “normal” processing.

Perhaps more interesting than the functionality that we
intend to put on the NIC is the functionality that we plan
to leave in the OS. As we have described, we will leave
memory management in the OS and only provide the NIC
with the mapping information that it needs to move data
between the network and the application. We also plan to
leave all failure detection and recovery in the OS.

High-performance applications employ various commu-
nication patterns. Generally, three types of messages are
likely to be sent. Very large messages are used for bulk
data transfer, small messages are used for communicating
progress or upcoming data transfers, and very small mes-
sages with no (useful) data are used for synchronization.
Applications using splintered TCP can tune the stack to de-
crease the CPU overhead for bulk data transfers, drastically
decrease the latency of synchronization messages, or de-
crease the kernel resources necessary to maintain a connec-
tion allowing for applications to scale to more nodes regard-
less of the types of messages they send.

6.3.1 Decreasing CPU Overhead

Applications often perform error checking on data and can
handle corruption of messages (either short or long) through
resends at the application level, but want to avoid extra CPU
overhead. Applications with these needs can consider TCP
in which congestion control is splintered and offloaded onto
a NIC.

Splintered TCP provides true zero copy for any pre-
posted receives. This allows an application to receive and
process data without unnecessarily interrupting the OS. The
less often the OS is interrupted, the lower the CPU overhead
associated with communication.

However, with splintering it is still necessary to invoke
the OS to process the TCP headers, acknowledgements, and
“unexpected” datagrams that have been queued by the NIC.
Traditionally, the OS is invoked by the NIC, using an inter-
rupt, for every datagram. This is needed to ensure the timely
processing of datagrams. To avoid overrunning the proces-
sor with interrupts, many high-performance networks coa-
lesce interrupts. That is, they wait until an number of pack-
ets have arrived or until a timer expires before they generate
an interrupt. Because data expected by the application is
being delivered in a timely manner, we can employ coalesc-
ing of interrupts without adding variance of latency to these
messages.

Successful offloading of congestion control along with
true zero-copy should substantially decrease the amount of
CPU overhead associated with communication. Addition-
ally, splintering allows the operating system to maintain ap-
propriate control over resource management of the host pro-
cessor and the NIC.

6.3.2 Decreasing Latency

Some applications are more concerned with the latency
of synchronization message whereas the accuracy of data
passed is less important (or not important at all as the send-
ing of the message is the synchronization event). Applica-
tions with these needs can consider TCP in which acknowl-
edgement generation, in addition to congestion control is
splintered and offloaded onto the NIC.

In addition to moving data to the application and main-
taining congestion information, the NIC will generate and
send an acknowledgement, including the needed flow-
control information, for a datagram associated with a pre-
posted receive. The TCP headers are still made available
to the OS, but because the NIC generates the acknowledge-
ment and moves the data, latency is very short.

If, on the other hand, an application wants TCP to be an
end-to-end messaging layer (as opposed to a wire layer),
then the OS will calculate and validate checksums when
processing the TCP headers. Acknowledgments will not be
sent until after the checksum is completed, and the applica-

6

tion will not have access to the data until the checksumming
is completed. The price to pay for end-to-end reliability is
an increase in latency.

6.3.3 Decreasing OS Resource Usage

Applications that require communication between hundreds
of thousands of nodes and are sensitive to latency variance
cannot use current implementation of TCP because there
are not enough OS resources (specifically buffers) to open
n2 connections. Applications with these needs can consider
TCP where connection maintenance is splintered and active
connections are offloaded onto the NIC. The control schema
is very similar to the control schema presented in the previ-
ous sections. In fact, splintering to relieve overhead, splin-
tering to decrease latency and splintering to decrease OS
resource usage can be used in conjunction.

All connections will be opened at the beginning of the
application. However, connections will only be assigned re-
sources if the OS receives either a message or a pre-posted
receive. The OS only needs to keep a pointer to conges-
tion control information and a sequence number for each
inactive connection. As connections become active, they
will be assigned buffers (either user memory in the case of
pre-posted receives, or OS buffers) and congestion control
windows. Because we can take advantage of the homogene-
ity of the SAN, we need only cache equivalence classes of
congestion control information rather than keep individual
congestion information for each connection.

7 Related Work

Splintered TCP is similar to the EMP protocol[7] in that
both push descriptors onto the NIC and achieve true zero-
copy. EMP is different in that it’s purpose is OS bypass for
MPI whereas our work uses the TCP protocol. Additionally,
EMP includes error handling on the NIC which potentially
pushes too much processing onto the slower processor on
the NIC. In our view, error handling should be treated as a
special case and should not consume the limited resources
that we would like to dedicate for high-performance activi-
ties.

Like splintered TCP, Trapeze[2] separates TCP headers
from data. However, Trapeze sends both data and headers
through the OS and uses page remapping to achieve zero-
copy. Splintered TCP DMA’s data directly to the applica-
tion, thereby achieving a true zero copy. Also, splintered
TCP avoids costly interrupts by offloading congestion con-
trol and ack generation to the NIC.

Splintered TCP is most similar to Wenbin Zhu’s work
on offloading parts of the RTS/CTS protocol of Portals[6].
While that work addressed the implementation of a special-
ized API, Portals, and a specialized protocol, RMPP, our

work addresses a commodity API, sockets, and a commod-
ity protocol, TCP. Moreover, we intend to extend the earlier
work, by pushing descriptors onto the NIC on pre-posted
reads.

8 Summary

OS bypass has been a popular philosophy aimed at re-
lieving the performance pressures associated with high-
performance communication. However, OS bypass at-
tempts to fully disengage the operating system from the pro-
cess of communication. This is not possible to achieve as
the operating system must manage resources like memory
and scheduling. Also, if work is pushed to the application,
the application must be invoked, which is no more efficient
than invoking the OS.

Splintering, on the other hand, attempts to more effi-
ciently use the operating system to control communica-
tion. By moving select functions of communication onto
the NIC, we can decrease the number of interrupts to the
operating system while still allowing the operating system
to manage resources.

There has long been a trend toward improving the per-
formance of TCP/IP in high-performance computing while
still maintaining its tremendous advantages. By creating a
true zero-copy TCP, we can show that we can reduce over-
head enough that TCP/IP becomes a viable protocol in the
world of cluster computing. Furthermore, by appropriately
offloading small parts of the protocols’ functionality onto a
NIC we have demonstrated the methods of splintering that
will become more and more prevalent as we move into a
distributed computing environment.

Here we have found that splintering the protocol stacks
and offloading some implementation aspects of TCP/IP will
offer application programmers more flexibility in determin-
ing whether they want to tune the TCP stack to increase
safety or increase performance by lowering communica-
tion overhead, lowering latency, or increasing the number
of connections or all three. Additionally, the splintered TCP
stack provides this increase in performance without sacrific-
ing the interoperability and cost advantages of the protocol.

References

[1] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L.
Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: A gigabit-per-
second Local Area Network. IEEE Micro, 15(1):29–36, 1995.

[2] J. Chase, A. Gallatin, and K. Yocum. End-system optimiza-
tions for highspeed TCP. In IEEE Communications, special
issue on TCP Performance in Future Networking Environ-
ments, volume 39, page 8, 2000.

[3] S. Elbert, Q. Snell, A. Mikler, G. Helmer, C. Csandy,
K. Stearns, B. MacLeod, M. Johnson, B. Osborn, and I. Veri-

7

gin. Gigabit ethernet and low cost supercomputing. Techni-
cal Report 5126, Ames Laboratory and Packet Engines, Inc.,
1997.

[4] P. Gilfeather and T. Underwood. Fragmentation and high per-
formance ip. In Proc. of the 15th International Parallel and
Distributed Processing Symposium, April 2001.

[5] P. Hochmuth. Vendors lower gigabit ethernet price bar.
Web: ’http://www.nwfusion.com/archive/2001/127651 11-
26-2001.html’, 2001.

[6] A. Maccabe, W. Zhu, J. Otto, and R. Riesen. Experience of-
floading protocol processing to a programmable nic. Techni-
cal Report TR-CS-2002-12, University of New Mexico, 2002.

[7] P. Shivam, P. Wyckoff, and D. Panda. EMP: Zero-copy OS-
bypass NIC-driven Gigabit Ethernet message passing. In
ACM, editor, SC2001: High Performance Networking and
Computing. Denver, CO, November 10–16, 2001, New York,
NY 10036, USA and 1109 Spring Street, Suite 300, Silver
Spring, MD 20910, USA, 2001. ACM Press and IEEE Com-
puter Society Press.

[8] E. Speight, H. Abdel-Shafi, and J. K. Bennett. Realizing
the performance potential of the virtual interface architecture.
In Proceedings of the 1999 Conference on Supercomputing,
ACM SIGARCH, pages 184–192, N.Y., June 20–25 1999.
ACM Press.

[9] W. R. Stevens. TCP/IP Illustrated, Volume 1; The Protocols.
Addison Wesley, Reading, 1994.

8

