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Abstract. In many cases, simple analytical models used by traditional
compilers are no longer able to yield effectively optimized code for com-
plex programs because of the enormous complexity of processor archi-
tectures. A promising alternative approach for optimizing applications
effectively has been the use of search-based empirical methods. The suc-
cess of empirically tuned library generators such as ATLAS has shown
that this strategy can be effective for domain-specific programs. How-
ever, to date there has been no general-purpose tool for effective empiri-
cal optimization of whole programs. The main obstacle to this approach
has been the need for evaluating a prohibitively large number of alter-
native program variants. To address this problem, we have developed
a prototype tool for automatic application tuning that uses loop-level
performance feedback and a direct search strategy to guide search for
the best set of optimization parameters. Experiments on four different
architectures show that direct search can be an effective technique for
finding good values for transformation parameters in a reasonable time.

1 Introduction

Over the last several decades, the complexity of microprocessor architectures
has grown considerably. Today, microarchitectures are so complex that using
static models it is difficult to predict how different features will interact during
program execution. As a result, it has become increasingly difficult for compilers
to choose the proper set of optimizations to yield the best program performance.
Parameters for program transformations such as tiling and unrolling are sensitive
not only to the input program but also to the underlying architecture. Moreover,
many of these transformations interact with each other in complex ways. Because
of all these complex interactions simple analytical models used by traditional
compilers fail to generate fast code across architectures.

As a result, programmers often have to manually transform their code to
get the desired performance on a specific architecture. However, this process of
manual tuning of programs is time consuming, tedious and error prone. Not to



mention that repeated manual transformation of the code makes it unmaintain-
able. In recent years, a novel alternative to manual tuning has been the the use of
empirically tuned libraries. In an empirical compilation system the parameters
for program transformations are not chosen using static models. Instead, pro-
grams with different optimization parameters are executed on the target machine
and the program variant that gives the best performance is selected. Empirically
tuned libraries such as ATLAS, are known to produce better code than native
compilers across a range of modern architectures and are recognized as viable
alternatives to hand-transformation in their respective domains.

In spite of the success of empirically tuned libraries, to date there has been no
general-purpose tool for automatically tuning whole programs using empirical
methods. The principal bottleneck in this regard has been the time for evaluat-
ing a prohibitively large number of program variants. Empirically tuned library
generators have the advantage of focusing on a specific problem domain. As such,
they can use domain specific knowledge to prune the search space to reduce the
number of program variants that must be considered. A recent study by Yotov
et. al. [19] show that for specific domains, carefully constructed static models
can give performance that is comparable to empirically tuned libraries. How-
ever, this is unlikely to be the case for tuning arbitrary whole programs since
a tuning tool will have to consider a large number of transformations and it
cannot make assumptions about the type of program it will encounter. Hence,
for tuning arbitrary programs, an empirically-driven approach may be the only
effective approach.

One of the reasons that empirically-based program tuning has been so costly
is because as yet there has been no suitable search strategy for exploring the
large and complex search space. Although genetic algorithms have been used
with some success in the context of the phase-ordering problem [3, 9], they are
not suitable when searching for unconstrained transformation parameters such
as tiling sizes and unroll factors. In this paper, we describe a framework for
empirically-based program tuning that uses direct search [6] to find optimal
parameters for the two transformations: tiling [17] and unroll-and-jam [2]. Our
goal has been to develop a general-purpose framework for empirically-based pro-
gram tuning that can deliver performance without having to depend on domain-
specific properties of programs. An important component of this tool is a search
strategy that can explore the complex optimization space effectively and effi-
ciently.

In the sections that follow, we discuss related work, give an overview of
our framework for empirically-based program tuning, describe the direct search
algorithm, present results of experiments using the framework, and finally discuss
our conclusions and future plans.

2 Related Work

A number of empirically-tuned libraries have been successful in delivering high-
performance in their respective domains. ATLAS [15] produces highly optimized



BLAS routines by probing the underlying hardware for platform specific infor-
mation and using a global search to find the best transformation parameters.
SPIRAL [18] and FFTW [4] use empirical techniques and mathematical proper-
ties of signal processing algorithms to choose an optimal algorithm from a suite
of algorithms. PhiPAC [1] uses a parameterized code generator that generates
portable C code for matrix multiply that achieves close to peak performance on
a range of architectures. The main distinction between our approach and these
empirically tuned libraries is that we do not attempt to exploit properties of any
specific domain. Our goal is to develop an empirical tuning strategy for general
scientific applications.

There has been some work in employing empirically-based tuning methods
in general purpose compilers. Cooper et. al. [3] use genetic algorithms to find
the best sequence of compiler passes. Kulkarni et. al. [9] have described efficient
ways of reducing the running time of the search algorithms. Our approach is
different from theirs, in that we look at optimization parameters rather than
transformation sequences.

Fursin et al. [5] describes using empirically-based methods to select the best
unroll, blocking and padding factors. The two search strategies that they use are
sequential and random search. The sequential search is augmented by selecting
only those loops that dominate program execution and searching for the best
parameters in separate phases. Their results showed that there was no signif-
icant advantage of using sequential search over random search. Previous work
by Kisuki et. al. [8] showed that in finding transformation parameters, random
search performs as well as other sophisticated techniques such as genetic algo-
rithms and simulated annealing. Part of our motivation for this work has been
to find a search strategy that would work better than random search.

Wolf et. al. [16] describes using static performance estimators to find the best
combination of parameters for loop transformations such as fusion, unrolling
and tiling. Although their approach is not strictly empirical it does show that
choosing the best combination of high-level transformations can significantly
improve a program’s performance. The only limitation to their approach is that
their performance improvement is bounded by the accuracy of static predictors.
Given the increasing complexity of the processor architecture it is unlikely that
any static predictor will give results that are as accurate as actually running the
program on the target machine.

The OSE compiler organization described by Triantafyllis et. al. [14] is per-
haps the most practical approach to adopting iterative compilation strategies to
a real compilation system. They use static models available in Intel’s high-level
optimizer to prune the space that is searched by their search module which sig-
nificantly reduces the compilation time. However, the parameters they consider
have either boolean values that either enable or disable a transformation or they
have a set of 4-5 legal values that control how aggressively a transformation is
applied. We consider parameters whose values can potentially be any integer
and hence we have to deal with a much larger search space. Of course, the OSE
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Fig. 1. Overview of Iterative Framework

approach to pruning the search space can be beneficial for our strategy as well
and that is part of our future plans.

3 A Framework for Empirically-based Program Tuning

Figure 1 gives an overview of our iterative compilation framework. The major
components of the framework include a source-to-source transformer (AutoLoop-
Tune), a set of performance measurement tools, and a search module that uses
the measurements to guide selection of program transformations. We use these
tools in conjunction with a native compiler for an architecture that will perform
low-level optimization of the source-level program variants generated by Au-
toLoopTune as it transforms them into machine code. On each pass through the
framework, the search module generates a set of transformation parameters that
are applied to the program by AutoLoopTune. The program is then compiled
using the native compiler and run on the target machine. During execution, per-
formance measurement tools collect metrics to feed to the search module. The
search module will use these metrics in combination with results from previous
passes to generate the next set of tuning parameters. This process continues
until some pre-specified optimization time limit has been reached.

Although the structure of our framework is not dramatically different from
that of other systems for empirical tuning, there are several key ideas that make
our framework unique. Among them is our use of loop-level performance mea-
surements, selection of tuning parameters at the loop level and our ability to



search for optimization parameters for independent code regions simultaneously.
The rest of the section discusses the core components of our framework in some
detail.

3.1 Transformation Tool

We implemented a source-to-source transformation tool (AutoLoopTune) [12]
that is capable of performing a large class of high level transformations. The
transformations supported by AutoLoopTune include tiling, unroll-and-jam, fu-
sion, array contraction, and iteration space splicing. In designing AutoLoopTune
the safety and profitability analyses have been kept completely separate from
each other. This decoupled structure together with its ability to process source
code directives at loop level granularity makes AutoLoopTune an ideal candidate
for use with an iterative compilation system.

Currently, our search strategy uses only two of the transformations supported
by AutoLoopTune, namely tiling and unroll-and-jam (inner loop unrolling in-
cluded). In the future, we plan to use our search strategy to pick the best pa-
rameters for each of the transformations supported by AutoLoopTune. The pa-
rameters for tiling and unrolling are specified using directives in the source code.
Each loop in the program can have a separate tiling and unrolling factor and
any integer value for these parameters is considered legal. AutoLoopTune reads
in a source file annotated with directives, applies the transformations and pro-
duces a transformed source file. An error message is sent to the search module if
legality issues prevent AutoLoopTune from applying any of the specified trans-
formations.

3.2 Performance Measurment Tools

We use tools from the HPCToolkit performance analysis toolkit [11] to gather
loop-level performance metrics to guide tuning. HPCToolkit can collect metrics
using hardware performance counters during a program’s execution and then
compute aggregate metrics for each loop in the program. HPCToolkit aggregates
metrics at the loop level by analyzing an application’s executable, recovering the
control flow graphs (CFGs) for its procedures, applying interval analysis to re-
cover information about loops in each CFG, and using symbol table information
to determine the statements within each loop. This information is then delivered
to the search engine for analysis.

There are two reasons for choosing HPCToolkit over a simpler performance
measurement tool that measures total execution time. First, we wanted the abil-
ity to measure performance at the loop level. For most numerical applications
execution time is concentrated around a few core loop nests. To get best results
each loop nest needs to be tuned individually using different sets of transforma-
tion parameters. In many cases, these loopnests are independent from each other
in the sense that the effect of applying the optimizations can be evaluated on
a loop nest by loop nest basis. Loop level performance measurements collected
by HPCToolkit gives us the ability to treat each loop individually and tailor the



transformation parameters accordingly. Our current prototype tool does not use
the information obtained at the loop level. In the future, this prototype will be
extended to use loop level execution metrics to guide separate instances of the
search on individual loop nests that are independent.

The second reason for using HPCToolkit in our framework is to be able to
collect performance metrics other than total running time. For instance, per-
formance metrics such as cache misses and pipeline stalls indicate causes of
inefficiency; for this reason, they may be better metrics to use for guiding the
search. We are currently exploring ways to use these performance metrics to help
guide our search for the best parameters.

3.3 Search Module

At the heart of our framework is the search engine which integrates all of the
components. The search engine uses a pattern-based direct search technique [6]
to search for transformation parameters. The current implementation of the
search module uses whole program execution time to guide the search process.
The search module starts off by reading in a configuration file that describes the
search space. The search space is described in terms of the loops that are to be
tiled and/or unrolled and the corresponding range of values for each parameter.
Currently, we pick the applicable transformations and the range of values for
each transformation parameter by hand. Loops that dominate a large portion of
the execution time and contain some reuse are chosen for tiling and unrolling.
The tiling range is chosen to be between 1 and some fraction of the loop upper
bound whereas unroll factors lie between 1 and 30. This method of selecting
transformations and parameter ranges is somewhat arbitrary and understand-
ably not the best way of doing it. In the future, we plan to use dependence
analysis to select the applicable transformations and static models to generate
the range of values for each transformation parameter.

The search module uses the information in the configuration file to gener-
ate the initial set of parameters and annotates the source with the appropriate
directives. After the program has been transformed by AutoLoopTune and the
transformed program has been run, the performance results are fed to the search
module. The search module uses this information to generate the next set of pa-
rameters. This process continues until the search converges to a local minima or
the pre-specified compilation time has been reached.

Although, our current implementation uses whole program execution time to
guide the search, in the future we plan to run multiple instances of the search
on independent code regions of the same program. Running multiple instances
of the search on a single program can potentially cut down the number of times
the program is executed.

4 Direct Search

Direct search methods for nonlinear optimization have been used by computation
scientists for over four decades [10]. The main feature of direct search that sets it



apart from other optimization techniques is that the decision making process in
direct search is based solely on function evaluation. So, unlike the quasi-Newton
methods, direct search does not require any derivative information to find a
direction of steepest descent. It was this particular feature that motivated us
to apply direct search to our problem domain. In the following subsections we
discuss the benefits and problems associated with using direct search for our
problem and describe the algorithm used in our compilation system in some
detail.

4.1 Why Direct Search?

It has been observed by researchers [3] that the search space for optimization pa-
rameters is large enough to make iterative approaches based on exhaustive search
impractical. For example, if we are taking the iterative approach to finding the
best compilation sequence for a compiler that supports 10 transformations - a
modest number by today’s standards - then an exhaustive search would have to
examine 1010 possible sequences. Even in the limited case of a few transforma-
tions, the search space can be quite large if we consider transformations whose
parameters can vary. For transformations like loop unrolling, the optimization
parameter determines how many times loops are to be unrolled in the program.
Hence, the values for these transformation parameters can potentially be any in-
teger. Moreover, these transformations are usually most effective when we allow
each loop to have a different parameter for each transformation. So, even for a
small kernel like a 1000x1000 matrix multiply, if we are considering tiling of two
loops with tile sizes from 1 to 100 and unrolling of one loop with unroll factor
from 1 to 20, we end up with a search space that contains 100 x 100 x 20 or
200,000 points. Evaluating the kernel at all these points could take several days
even on a reasonably fast microprocessor. Our goal is to use direct search to reap
most of the benefits possible with empirically-based program tuning while only
exploring a small fraction of the search space of transformation parameters.

It is not just the size that makes exploring the transformation search space
difficult. Studies have shown that the search space is neither smooth nor contin-
uous [3, 7]. Transformations like tiling and instruction scheduling are highly sen-
sitive to the underlying architectutre. Moreover, many of these transformations
interact with each other in complicated ways. As a result, the characteristics of
the search space varies from program to program, from platform to platform and
even from one input set to the other. Building accurate models for this search
space has become extremely difficult. Hence, in the absence of such modeling, a
derivative-free search method becomes a good choice to explore this optimization
space.

Knijnenburg et. al. [8] conducted an experiment where they explored the
search space of tiling sizes and unroll factors for matrix-multiply using several
different search techniques. The search methods included simulated annealing,
pyramid search, window search and a random search. An interesting and some-
what surprising result of that experiment was that random search performed as



well (and in some cases even better than) the other more sophisticated meth-
ods. The explanation for this is that all the other search techniques assume
certain properties to hold for the space that is being explored. For example,
simulated annealing uses a pre-computed value called temperature when explor-
ing the search space. At any time during the search, the decision to move to a
new point is based not only on the current function value but also on the value
of the temperature parameter. However, if the current temperature is computed
without detailed knowledge about the search space then it may not be useful
in guiding the search in the best direction. Similarly, both pyramid search and
window search depend on certain properties of the search space. In using direct
search to explore the transformation search space we wanted to step away from
the search methods that uses some form of modeling and use a method that
relies solely on function evaluations.

Like most other search techniques direct search is not guaranteed to find the
global minima. So, the results obtained through direct search may not always be
as good as the one obtained through an exhaustive search. However, given the
long compilation time associated with an exhaustive search this might not be
that big a penalty. Another issue with direct search is that it is known to take a
long time to converge when dealing with a large number of parameters. (usually
more than 10). [13]. This can potentially increase the compilation time to a point
where it is no longer feasible to use direct search in an iterative compilation
system. However, for our problem domain we do not necessarily need the search
to converge to a local minima. By keeping track of the best value found so far we
can stop the search after a prespecified number of iterations. The experimental
results from Section 5 suggest that this approach can be useful in finding good
values even in cases when we do not wait for the search to converge to a local
minima.

4.2 The Algorithm

To explore the search space of tiling and unrolling factors, we use a version of
the pattern-based direct search method first proposed by Hookes and Jeeves [6].
We introduce the following terms to describe the algorithm.

– N denotes an n−dimensional search space, where each dimension represents
a transformation parameter that is being tuned

– p = (p1, p2, ...pn) denotes a point in the search space where pi is the value
of the ith parameter

– f(p1, p2, ...pn) denotes the execution time for the program compiled with
transformation parameters p1, p2, ...pn

– s denotes the step size, this value determines the size of the subspace that
is explored during the exploratory moves

The goal of the search algorithm is to find a point (p1, p2, ...pn) in N such
that f(p1, p2, ...pn) is minimized. The algorithm proceeds by making a set of
exploratory moves and pattern moves. The smaller exploratory moves identify a



Table 1. Benchmarks

Program Description LOC

advect3d advection kernel from NCOMMAS code for weather modeling 545
lud 1000 x 1000 lu decomposition based on matrix vector multiply 131
mm 1000 x 1000 matrix-matrix multiply 35
vpenta NAS kernel benchmark program 145
swim weather prediction program from SPEC 2000 FP benchmark suite 282
mgrid multi grid solver programs from SPEC 2000 FP benchmark suite 344

promising direction of movement from the current position. Once, this direction
has been identified the search takes a larger jump in that direction (pattern
move) and then explores that new location. This process continues until the
exploratory moves fail to find a new promising direction. The major steps of the
algorithm are sketched below:

Step 1: Pick an initial base point p. This is done by choosing the midpoint
within the range for each parameter.

Step 2: Make exploratory moves. For each parameter pi we first increment
its value by step size s and evaluate the program at p′(p1, ...pi + s, ..., pn). If
the execution time at p′ is less than the current minimum then we set the value
of parameter pi to (pi + s) and move on to the next parameter. Otherwise
we decrement the value of the parameter by s and evaluate the program at
p′(p1, ...pi − s, ..., pn). If f(p′) is less than the current minimum then we set the
value of parameter pi to (pi − s). Otherwise the value of the parameter remains
unchanged. Once, all the parameters have been explored we move to Step 3

Step 3: Make pattern move. The series of exploratory moves gives us a new
point p′ in N where we are likely to find a value that is less than the current
minimum. The pattern move moves the base point in the direction of p′, that is
p← p′ − p. The execution time at this new point is evaluated. If this execution
time is less than the current base point execution time then we go to Step 2.
Otherwise we move to Step 4.

Step 4: Reduce step size. If we have reached the minimum step size then we
move to Step 5. Otherwise, we reduce the step size by the step size reduction
factor and go back to Step 2.

Step 5: Done.

5 Experimental Results

5.1 Benchmarks and Search Space

Table 1 lists the benchmarks that were used in our experiments. Among the
benchmarks there are four kernels: advect3d, lud, mm, vpenta and two full ap-
plications: swim and mgrid. Table 2 lists the applied transformations and the
dimensions of the search space for each application. The total number of points
in the search space is also listed. Each transformation parameter whose value is



Table 2. Search Space Properties

Benchmark Loops Loops Search Space Points in Search
Unrolled Blocked Dimension Space

advect3d 1 1 10 x 100 1,000
lud 2 0 30 x 30 900
mm 1 2 200 x 10 2,000
vpenta 1 1 10 x 100 1,000
swim 1 4 10 x 100 x 100 100,000
mgrid 1 2 10 x 100 x 100 100,000

Table 3. Platforms

Processor L1 L2 L3 Compiler

Alpha 21264A @ 667MHz 8 K 8 M - Compaq Fortran V5.5-1877
Itanium2 @ 900 MHz 16 K 256 K 1.5 M Intel Fortran Compiler 7.1
SGI Origin R10K @ 195 MHz 32 K 1 M - MipsPro 7.3,
Pentium 4 @ 2 GHz 8 K 512 K - Intel Fortran Compiler 7.1

Table 4. Comparison of Speedup between Direct Search and Exhaustive Search on
Itanium 2

Program Exhaustive DS 30 DS 60 DS 90 DS 120

Speedup Frac of Best Frac of Best Frac of Best Frac of Best

advectd3d 1.23 96.75% 96.75% 96.75% 96.75%
lud 4.07 87.48% 100.00% 100.00% 100.00%
mm 1.22 95.90% 99.18% 100.00% 100.00%
vpenta 1.57 86.62% 98.08% 98.08% 98.08%
swim 1.27 96.06% 97.63% 97.63% 97.63%
mgrid 1.17 95.34% 97.89% 97.89% 97.89%

Table 5. Comparison of Tuning Time between Direct Search and Exhaustive Search
on Itanium 2

Program Exhaustive DS 30 DS 60 DS 90 DS 120

Time Frac of Time Frac of Time Frac of Time Frac of Time

advectd3d 8:27:11 2.64% 4.99% 9.77% 9.77%
lud 2:28:23 4.10% 6.08% 6.08% 6.08%
mm 4:08:34 1.96% 3.81% 5.71% 6.70%
vpenta 2:31:19 1.69% 3.45% 4.26% 5.02%
swim 664:28:09 0.10% 0.17% 0.29% 0.36%
mgrid 831:23:45 0.06% 0.13% 0.22% 0.22%



Table 6. Performance Improvement and Tuning Time on Itanium2 using Random
Search

Program DS 30 DS 60 DS 90 DS 120

Speedup Time Speedup Time Speedup Time Speedup Time

advectd3d 1.17 14:28 1.17 26:56 1.17 43:25 1.17 57:53
lud 3.47 5:06 3.91 8:11 4.03 13:17 4.03 16:23
mm 1.08 4:25 1.09 6:51 1.09 9:16 1.09 11:41
vpenta 1.49 1:25 1.55 2:53 1.57 4:20 1.57 5:46
swim 1.13 42:07 1.16 1:24:15 1.16 2:06:23 1.16 2:48:30
mgrid 1.00 43:30 1.02 1:27:00 1.02 2:10:30 1.02 2:54:11

Mean 1.56 1.65 1.67 1.67

Table 7. Performance Improvement and Tuning Time on Itanium2 using Direct Search

Program DS 30 DS 60 DS 90 DS 120

Speedup Time Speedup Time Speedup Time Speedup Time

advectd3d 1.19 13:23 1.19 25:20 1.19 49:34 1.19 49:34
lud 3.52 6:05 4.07 9:01 4.07 9:01 4.07 9:01
mm 1.17 4:52 1.21 9:28 1.22 14:11 1.22 16:39
vpenta 1.36 2:33 1.54 5:13 1.54 6:27 1.54 7:36
swim 1.22 41:07 1.24 1:09:11 1.24 1:56:34 1.24 2:25:02
mgrid 1.12 31:00 1.15 1:04:00 1.15 1:47:50 1.15 1:47:50

Mean 1.60 1.73 1.74 1.74

Table 8. Performance Improvement and Tuning Time on SGI Origin R10000 using
Direct Search

Program DS 30 DS 60 DS 90 DS 120

Speedup Time Speedup Time Speedup Time Speedup Time

advect3d 1.00 41:23 1.05 1:21:32 1.05 2:05:02 1.05 4:17:24
lud 2.98 56:00 2.99 1:44:45 2.99 2:05:12 2.99 2:05:12
mm 1.54 19:10 1.58 56:04 1.59 1:22:30 1.59 1:55:45
vpenta 1.61 22:17 1.65 41:23 1.65 1:06:03 1.65 1:20:03
swim 1.04 3:30:19 1.04 5:30:56 1.05 8:12:46 1.05 8:12:46
mgrid 1.04 2:23:00 1.04 3:25:12 1.04 4:45:00 1.04 4:45:00

Mean 1.54 1.56 1.56 1.56



Table 9. Performance Improvement and Tuning Time on Alpha 21164 using Direct
Search

Program DS 30 DS 60 DS 90 DS 120

Speedup Time Speedup Time Speedup Time Speedup Time

advect3d 1.58 7:47 1.58 14:44 1.63 19:35 1.63 41:22
lud 1.07 11:02 1.25 17:28 1.25 21:25 1.25 21:25
mm 1.02 6:41 1.02 12:12 1.02 18:01 1.02 38:02
vpenta 1.41 8:28 1.41 16:00 1.42 21:16 1.42 23:29
swim 1.03 1:06:03 1.04 1:59:41 1.04 3:18:50 1.04 3:44:24
mgrid 1.17 58.29 1.17 1:40:21 1.17 2:24:34 1.17 3:01:04

Mean 1.21 1.25 1.26 1.26

Table 10. Performance Improvement and Tuning Time on Pentium 4 using Direct
Search

Program DS 30 DS 60 DS 90 DS 120

Speedup Time Speedup Time Speedup Time Speedup Time

advect3d 1.23 3:33 1.27 5:20 1.27 5:37 1.27 5:37
lud 1.52 6:43 1.53 10:33 1.53 10:33 1.53 10:33
mm 6.46 5:05 6.60 5:28 6.65 7:35 6.75 9:35
vpenta 5.75 2:06 5.75 4:00 5.75 14:01 5.75 14:01
swim 1.00 1:10:43 1.00 1:56:03 1.00 2:11:40 1.00 2:11:40
mgrid 1.05 1:15:32 1.05 2:02:07 1.05 2:02:30 1.05 2:02:30

Mean 2.84 2.87 2.88 2.89



being searched by the search algorithm corresponds to a dimension of the search
space for that application. As mentioned previously, the possible range of values
for each transformation parameter is chosen by hand prior to performing the
search. As an example, two loops were unrolled in lud and the maximum unroll
factor considered for each loop was 30. Hence, for lud we have a two-dimensional
search space with 900 points. For swim four loops were blocked and one loop was
unrolled. The four loops that were blocked came from two different loop nests
and in searching for the tiling parameters we only considered square tile sizes
(i.e. the same tile size was used for loops in the same loopnest). For the un-
rolled loop the maximum unroll factor considered was 10 whereas the tiling sizes
ranged between 1 and 100. Hence, for swim we have a three-dimensional search
space consisting of 100,000 points.

5.2 Performance Across Architectures

A major argument for doing iterative compilation is its ability to deliver im-
proved performance in an architecture independent manner. Hence, to determine
the effectiveness of our approach we ran experiments on four different platforms
which are listed in Table 3. On each platform, we first compiled the program
with the vendor compiler with full optimization turned on. We ran this program
to get the baseline execution time. We then used our direct search technique to
search for the optimization parameters for the core loop nests of each program.
When using the native compilers in our system we disabled tiling and unrolling
in the native compiler whenever possible. This step was necessary since in some
cases the native compiler would actually degrade performance when it re-applied

transformations which had already been applied by our high-level transformer.
In each case we allowed the search to continue untill 30, 60, 90 and 120 iterations.
Tables 7–10 list performance improvement and tuning time for each platform.
For each platform speedup that is reported is the speedup that is obtained over
the fully optimized version of the native compiler. The total tuning time includes
program evaluations, compilation and search analysis time. The time to do the
high level transformations is not included in the total tuning time. Currently,
we do not have an implementation of the high-level transformer on all our test
platforms. So, for our experiments we generated all the program variants for the
search beforehand and during the experiments the call to the source-to-source
transformer was replaced by a unix cp operation. It should be noted however,
that the time for doing high level transformations is not likely to add much to
the total tuning time. For any moderate sized program the principal bottleneck
is the execution time of the programs.

The results presented in Tables 7–10 show that our approach can yield sig-
nificant performance improvements across a range of architectures. Overall, the
biggest benefits were obtained on the Pentium whereas Alpha provided the least
improvements. One explanation, for getting relatively less improvement on the
Alpha is that for the Compaq Fortran Compiler we were not able to selectively
disable tiling and unrolling. So, to prevent the native compiler from re-applying
tiling and unrolling, we compiled the transformed code with the -O4 option



whereas the baseline version was compiled with full optimizations turned on
(-O5 option). Using the -O4 option turned off some other high-level transforma-
tions such as scalar replacement which may have inhibited the effectiveness of
the unroll-and-jam transformation.

5.3 Comparison with Exhaustive Search

In order to evaluate the performance of the direct search strategy we wanted to
compare the results against results from an exhaustive search. We ran a set of
experiments on the Itanium 2 platform where we used exhaustive search to find
the best tiling and unroll factors for the four kernels. Table 4 lists the speedup
obtained using exhaustive search. Table 4 also lists speedup obtained from direct
search as a percentage of the speedup obtained from exhaustive search. Table 5
lists the tuning time for the two search strategies in a similar fashion. When
limiting direct search to 30 iterations about 93% of the performance is gained
at about 1.7% of the cost. Increasing the number of iterations gets us closer
to the best speedup obtained from exhaustive search. For lud and mm we are
able to find the best solution within the search space after 60 and 90 iterations
respectively. The results in Table 4 and 5 show that direct search can come very
close to the performance of exhaustive search at only a fraction of the cost.

5.4 Comparsion with Random Search

We also wanted to find out how the direct search strategy compares with a
randomized search strategy. Table 6 presents performance results and tuning
time for a random search strategy on the Itanium 2 platform. The random search
used the same search space as the direct search and at each iteration a random
point within the search space was generated and evaluated. The search was
allowed to continue until a predetermined number of evaluations. The minimum
execution time from all evaluations was compared to the baseline execution time
to obtain speedup information.

Comparing the results from Table 6 and Table 7, we see that on average direct
search is able to achieve higher speedup than a random search. This improvement
is not as significant as we had expected. For 30 evaluations the performance gains
from direct search is only about 3.2% better than that of random search. In fact,
for vpenta random search is able to find a better execution time after both 30 and
60 evaluations. However, direct search does perform significantly better on the
two applications that have the largest search spaces. For swim the performance
improvement is about 7% higher than that of random search whereas for mgrid
the performance improvement is about 12% higher.

These results indicate that direct search is likely to perform better than
random search as the search space gets larger. However, for smaller search spaces
random search is almost as effective as direct search. This suggests that there
might be room for improving the direct search strategy for smaller search spaces.
One approach of doing this might be to tune the step size parameter to particular
search spaces. We plan to explore this issue in future.



5.5 Compilation Costs

The performance improvements that we obtain does come at a cost however.
This cost comes in terms of longer tuning times. The total tuning time for the
set of benchmarks ranges from a few minutes (kernels) to several hours (full
applications). This ofcourse is a natural consequence of any iterative approach.
The tuning time is mostly dominated by program execution time. As we can see
from the results, increasing the number of iterations results in a proportional
increase in tuning time. Also the two applications that have the longest running
times suffer the longest tuning time as well.

Another observation to be made from the results is that performance benefits
start to diminish rapidly as we run the search algorithm for longer iterations. For
all platforms except Itanium2, 98% of the benefits are realized after 30 iterations.
Even for Itanium2, going from 30 to 60 iterations yields a modest 10% extra
improvement whereas the total tuning time is almost doubled. Interestingly, this
behavior holds true for swim and mgrid whose search space is significantly larger
than the search space of the kernels. One lesson in this might be that 30 iterations
for the search algorithm is perhaps too many. More experiments will be needed if
we wish to discover the right number of iterations for a given program. However,
even in the long run we expect that in an iterative approach there will always
be a trade-off between the performance gains and tuning time.

5.6 Summary

The results in this section show that direct search strategy is able to find suitable
tile sizes and unroll factors by exploring only a small fraction of the search space.
The results also support the notion that an iterative approach is able to deliver
performance across architectures at the cost of extra compilation time.

There are several issues that still remain open. For our experiments the se-
lection of loops and the generation of the search space was done by hand. The
choice of loops to unroll or tile and the initial search space used by the search
strategy has a strong impact on how well the search performs. Finding suitable
ways to generate the search space automatically will require further research.
Another issue that needs to be explored is the cost of tuning time. If the iter-
ative approach is to be employed in a production environment we need to find
out the level of performance it needs to deliver so that the compilation cost is
amortized over many runs of the program.

6 Conclusions and Future Work

Given the enormous complexity of today’s processor architecture, building exact
architectural models have become an intractable task. As such, most optimizing
compilers use simplified models that have obvious shortcomings. An empirical
method can overcome some of these shortcomings by searching for the best trans-
formation parameters through iterative evaluation of the program. However, to



do an effective job such a system requires a powerful search technique that can
explore the complex search space to find good parameters values in reasonable
time.

Our experimental results in Section 5 show that direct search can be an
effective strategy for exploring the transformation parameter space. Its ability
to discover good solutions in relatively few iterations make direct search a good
choice for an iterative compilation system.

Although direct search proves to be an effective strategy in exploring the
search space, there are several issues that still need to be addressed in applying
this technique in an empirical tuning framework. In future, we plan to improve
our strategy by using static models and architectural information to generate and
prune the search space. A smaller and more representative search space is likely
to improve the search results. The issue of long tuning times also needs to be
addressed. We plan to explore ways of using training data sets during the tuning
process to cut down the program execution time. Finally, the search itself might
be made more effective by tailoring the step size parameter to specific search
spaces.
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