
On the Use of a Two-Grids Method in the

Numerical Simulation of Free Boundary Problems

A. Caboussat∗and R. Glowinski

University of Houston,

Department of Mathematics

Houston, Texas 77204

Abstract

A two-grids method is presented for the numerical simulation of liquid-

gas flows with a free surface. The method is then extended to an obstacle

problem involving a free boundary.

A liquid-gas free surface flow is first considered. The incompressible

Navier-Stokes equations are assumed to hold in the liquid domain. In the

gas domain, the velocity is disregarded, while the pressure is assumed to

be constant in each connected component of the gas domain and follows

the ideal gas law.

An implicit splitting scheme, together with a two-grids method, are

used to decouple the physical phenomena. A method of characteristics on

a structured grid is used to track the liquid domain, while finite elements

techniques are used to solve a diffusion problem on an unstructured mesh.

The two-grids method and a similar time splitting scheme are then

used to consider some obstacle problems. Numerical results show the

efficiency of the method in terms of accuracy and computational cost.

1 Introduction

Free surface flows are nowadays of great importance in many industrial pro-
cesses. Many softwares are developed to simulate such problems, for instance
in the frame of mold filling.

Complex flows with liquid-gas free surfaces have already been considered in
the literature and many numerical models have been developed. In most of these
numerical models, the liquid-gas mixture is considered to be an incompressible
two-phase flow [2, 5, 6, 11, 16, 32, 33, 34, 35] or a compressible two-phase flow
[1, 20, 29]. Some methods mixing an incompressible liquid and a compressible
gas were proposed for instance in [4, 8]. All these models require to solving in-
compressible/compressible equations in the whole liquid-gas domain, which can

∗Supported by the Swiss National Science Foundation, Grant number PBEL2-103152.

1

be computationally very expensive, especially in three space dimensions. Our
goal here is to present a numerical model which allows to reduce this computa-
tional cost with special attention to the use of a two-grids method for the space
discretization.

The model is as follows. Since we are not interested in the dynamical effects
inside the gas domain, the velocity in the gas is disregarded and the compress-
ibility effects of the gas are taken into account by computing a constant pres-
sure inside each connected component of the gas domain. Following [18, 19], a
volume-of-fluid method [13, 14, 26, 27, 30] is used to track the liquid domain
and to compute the velocity and pressure fields in the liquid. Then the con-
nected components of the gas domain are identified and their internal pressure
is computed with the ideal gas law using the algorithm presented in [3].

An implicit time splitting algorithm is applied to decouple all the physical
phenomena. Advection phenomena (including the motion of the volume fraction
of liquid and the prediction of the liquid velocity) are solved first on a structured
grid of small cells. Then, the bubbles of gas are tracked and the pressure inside
each bubble of gas is computed using the ideal gas law. Finally a generalized
Stokes problem is solved on an unstructured finite element mesh in order to
update the velocity in the liquid. Surface tension effects are neglected since
high Reynolds numbers are considered here and the aim of this work is to study
the uses and efficiency of a mesh-to-mesh mapping consisting in a projection
method. The numerical error of the projection method is illustrated on a simple
example, namely the conservation of a volume of liquid translated with given
velocity. Numerical results are then presented to show the efficiency of our
algorithm.

Then the time splitting scheme and the projection method are applied to
some obstacle problems, see e.g. [7, 10]. We consider a diffusion problem,
whose solution is imposed to be positive on a subdomain of the computational
domain. The subdomain consists for instance in a line when the computation
domain is a two-dimensional domain. A discontinuous approximation is used
for the diffusion part of the problem, while a continuous approximation is used
to impose the positiveness of the solution on the subdomain. A time splitting
scheme and a two-grids/projection method are used. Numerical results are also
presented in this framework.

The structure of the paper is the following : in the next section, the governing
equations of the fluid flow problem are proposed. In Sect. 3, the time splitting
algorithm for the fluid flow is presented, while the space discretization is detailed
in Sect. 4. Numerical results for the two-phase flow problem are presented in
Sect. 5. In last section, the two-grids projection method is extended to obstacle
problems and numerical results are presented.

2

2 The Mathematical Modeling of Free Surface

Flows

Let Λ be a cavity of R
d, d = 2, 3, in which the fluid must be confined and let T >

0 be the final time of simulation. For any given time t, let Ωt be the domain occu-
pied by the fluid, let Γt be the free surface defined by ∂Ωt\∂Λ and let QT be the
space-time domain containing the liquid, i.e. QT = {(x, t) : x ∈ Ωt, 0 < t < T}.

Some of the notations are reported in Fig. 1 in the frame of a two-dimensional
situation, namely the filling of an S-shaped channel. This situation corresponds
to water entering a thin S-shaped channel lying between two horizontal planes
thus gravity can be neglected. A valve is located at the end of the channel so
that gas may escape.

t
x1

x2

-
6
��*

Λ

Ω0 -
t = 0

valve

trapped gas

escaping gas

Ωt

t

t = T

Figure 1: Computational domain for the filling of an S-shaped channel. At
initial time, the channel Λ is empty. Then water enters from the bottom and
fills the channel.

In the liquid region, the velocity field v : QT → R
d and the pressure field

p : QT → R are assumed to satisfy the time-dependent, incompressible Navier-
Stokes equations, that is

ρ
∂v

∂t
+ ρ(v · ∇)v − 2div (µD(v)) + ∇p = f in QT , (1)

div v = 0 in QT . (2)

Here D(v) =
1

2
(∇v + ∇vT) is the rate of deformation tensor, ρ the constant

density and f the external forces. In order to take into account the turbulence

3

effects, a simplified algebraic model is chosen [31]. The viscosity µ is defined
by µ = µL + µT , where µL is the laminar, constant, viscosity and µT = µT (v)
is the additional turbulent viscosity, defined by µT (v) = αT ρ

√

2D(v) : D(v)
where αT is a parameter to be chosen. The choice of such a model is made
to obtain more realistic numerical results but a complete study of turbulence
effects is not made here.

Let ϕ : Λ × (0, T) → R be the characteristic function of the liquid domain
QT . The function ϕ equals one if liquid is present, zero if it is not. In order to
describe the kinematics of the free surface, ϕ must satisfy (in a weak sense):

∂ϕ

∂t
+ v · ∇ϕ = 0 in QT . (3)

The initial conditions are the following. At initial time, the characteristic func-
tion of the liquid domain ϕ is given, which defines the liquid region at initial
time:

Ω0 = {x ∈ Λ : ϕ(x, 0) = 1} .

The initial velocity field v is then prescribed in Ω0. The boundary conditions
are as follows. On the boundary of the liquid region being in contact with the
walls (that is to say the boundary of Λ, see Fig. 1), inflow, slip or no slip
boundary conditions are enforced, see [18, 19]. The reason for using slip instead
of no slip boundary conditions along the walls is due to the fact that, when
large Reynolds numbers are involved, no slip boundary conditions would induce
strong boundary layers along the walls, which would require fine layered meshes.

On the free surface Γt, forces due to surface tension effects are neglected, so
that the only forces acting on the free surface are the normal forces due to the
pressure of the surrounding gas:

−pn + 2µD(v)n = −Pn on Γt, t ∈ (0, T) , (4)

where n is the unit normal of the liquid-gas free surface oriented toward the
gas and P is the pressure in the gas. For example, consider again Fig. 1 (the
numerical experiment is described in Sect. 5). When the cavity is filled with
liquid, the gas between the valve and the liquid can escape, thus P = Patmo is
the atmospheric pressure on the upper part of the liquid-gas interface. However,
another fraction of gas is trapped by the liquid and cannot escape. A resulting
force acts on the liquid-gas interface which prevents the bubbles from vanishing
during experiment.

Consider again the case of Fig. 1. During the simulation, the gas trapped by
the liquid and is compressed. In our model, the velocity in the gas is disregarded,
since i) we are not interested in the dynamical effects in the gas and ii) solving
the Euler compressible equations in the gas domain is CPU time expensive.

The pressure P in the gas is assumed to be constant in each bubble of gas,
that is to say in each connected component of the gas domain. Let k(t) be the
number of bubbles of gas at time t and let Bi(t) denote the domain occupied by

4

the bubble number i (the i-th connected component). Let Pi(t) be the pressure
in Bi(t). The pressure in the gas P : Λ\Ωt → R is then defined by:

P (x, t) = Pi(t), if x ∈ Bi(t) .

Moreover, the gas is assumed to be an ideal gas. Let Vi(t) be the volume of
Bi(t). At initial time, all the gas bubbles have given pressure. At time t, the
pressure in each bubble is computed by using the ideal gas law:

Pi(t)Vi(t) = constant i = 1, . . . , k(t) , (5)

with constant temperature. Note that this total fraction number of molecules
in one bubble is proportional to the product of the pressure of the bubble times
its volume since the temperature is assumed to be constant. It is assumed in
the following that the total fraction number of molecules of gas inside the set of
bubbles which are not in contact with a valve, see Fig 1, is conserved between
two time steps.

In most situations and when the time step is small enough, three situations
may appear between two time steps at different locations in the process: first, a
single bubble may stay a single bubble; then a bubble can split into two bubbles
and finally, two bubbles may merge into one. More complicated situations
may appear but these are mainly combinations of these three situations. The
situation of Fig. 2 is first considered. Assume that the pressure P (t) in the
bubble at time t and the volumes V (t) and V (t + τ) are known. The fraction
number of molecules inside the bubble is conserved, so that the gas pressure at
time t+ τ is computed from the relation P (t+ τ)V (t+ τ) = P (t)V (t).

P (t), V (t)

t

P (t+ τ)

V (t+ τ)

t+ τ

Figure 2: One single bubble is floating in the liquid. The product PV remains
constant between time t and time t+ τ , i.e. P (t+ τ)V (t+ τ) = P (t)V (t).

The situation of Fig. 3 corresponds to the merging of two bubbles. The
pressure at time t + τ is computed by taking into account the conservation of
number of molecules in the bubbles which yields P1(t+τ)V1(t+τ) = P1(t)V1(t)+
P2(t)V2(t).

The case when one bubble splits into two bubbles is finally discussed, see
Fig. 4. The number of molecules inside the gas domain is conserved between

5

P1(t), V1(t)
bubble 1

P2(t), V2(t)
bubble 2

t

liquid

P1(t+ τ), V1(t+ τ)
bubble 1

t+ τ

liquid

Figure 3: Merging of two bubbles between time t and time t+ τ . The pressure
in bubble 1 at time t + τ is computed from the relation P1(t + τ)V1(t + τ) =
P1(t)V1(t) + P2(t)V2(t).

time steps t and t+τ , that is P1(t+τ)V1(t+τ)+P2(t+τ)V2(t+τ) = P1(t)V1(t).
The relative fraction of molecules in the bubble 1 at time t which is in bubble
1 (respectively 2) at time t + τ is determined from the computation of the
sub-volumes of the bubble 1 at the exact time of splitting. Then the pressures
P1(t + τ) and P2(t + τ) at time t+ τ can be computed by taking into account
the compression/decompression of each bubble.

P1(t), V1(t)
bubble 1

t

liquid

P1(t+ τ)
V1(t+ τ)

bubble 1

V2(t+ τ)
P2(t+ τ)
bubble 2

t+ τ

liquid

Figure 4: Splitting of one bubble into two bubbles. Each molecule in the bubble
number 1 at time t appears in one of the bubbles at time t+ τ .

The mathematical description of our model is now completed. The model
unknowns are the characteristic function ϕ in the whole cavity, the velocity v

and pressure p in the liquid domain, as well as the bubbles of gas, i.e. the
connected components of the gas domain, and the constant pressure Pi in each
bubble of gas. These unknowns satisfy equations (1), (2), (3) and (5) with the
boundary condition (4) on the free surface Γt.

6

3 Time Discretization

An implicit, order one splitting algorithm is used to solve (1)-(4) with boundary
condition (4) involving the pressure in the gas P , computed with (5).

Let 0 = t0 < t1 < t2 < . . . < tN = T be a subdivision of the time interval
[0, T], define τn = tn − tn−1 the n-th time step, n = 1, 2, . . . , N , τ the largest
time step.

Let ϕn−1, vn−1, Ωn−1, kn−1 and Bn−1
i , Pn−1

i , i = 1, 2, . . . , kn−1 be approxi-
mations of ϕ, v, Ω, k and Bi, Pi, i = 1, 2, . . . , k respectively at time tn−1. Then
the approximations ϕn, vn, Ωn, kn and Bn

i , Pn
i , i = 1, 2, . . . , kn at time tn are

computed by means of the following implicit splitting algorithm, as illustrated
in Fig. 5.

First two advection problems are solved, leading to a prediction of the new
velocity vn−1/2 together with the new approximation of the characteristic func-
tion ϕn at time tn, which allows to determine the new fluid domain Ωn and
gas domain Λ\Ωn. Then, the connected components of gas (bubbles) Bn

i ,
i = 1, . . . , kn are tracked with a procedure we explain in the following and
the pressure P n

i in each bubble Bn
i is computed. Finally, a generalized Stokes

problem is solved on Ωn with boundary condition (4) on the liquid-gas interface,
inflow or no slip boundary conditions on the boundary of the cavity Λ and the
velocity vn and pressure pn in the liquid are obtained.

This time splitting algorithm introduces an additional error on the velocities
and pressures which is of order O(τ 2) at each time step or equivalently of order
O(τ) on the whole simulation, see e.g. [17]. On the other hand, the introduction
of this splitting algorithm permits to decouple the motion of the free surface
from the diffusion step and to solve the Stokes problem in a fixed domain. Note
also that it allows one mesh to be finer than the other. In the light of these
remarks, let us focus on the different steps of the splitting algorithm.

The first step is an advection step. Solve between the times tn−1 and tn the
two advection problems :

∂v

∂t
+ (v · ∇)v = 0 , (6)

∂ϕ

∂t
+ v · ∇ϕ = 0 , (7)

with initial conditions given by the values of the functions v and ϕ at time
tn−1. This step is solved exactly by the method of characteristics (see [23] for
instance) and yields a prediction of the velocity vn−1/2 and the approximation
of the characteristic function of the liquid domain ϕn at time tn. The domain
Ωn is then defined as the set of points such that ϕn equals one.

Given the new liquid domain Ωn, the next task consists in finding the gas
bubbles Bn

i , i = 1, . . . , kn. Then the pressure inside each bubble has to be
computed. The goal of this procedure is to take into account the gas pressure
with a minimal computational cost.

The key point is to find the number of bubbles kn (that is the number of
connected components of the gas domain) and the bubbles Bn

i , i = 1, . . . , kn.

7

Pn−1
i , Bn−1

i

gas vn−1, pn−1

ϕn−1,Ωn−1

liquid

Time tn−1

vn−1/2

ϕn,Ωn

Advection step
Time tn−1/2

Pn
i , B

n
i

Bubbles pressure
Time tn−1/2

vn, pn

Diffusion step
Time tn

Figure 5: The splitting algorithm (from left to right and top to bottom). At time
tn−1, the quantities ϕn−1, vn−1, Ωn−1, kn−1 and Bn−1

i , Pn−1
i , i = 1, 2, . . . , kn−1

are known (top left). Two advection problems are solved to determine the new
approximation ϕn of the characteristic function of the liquid domain, the new
liquid domain Ωn and the predicted velocity vn−1/2 (top right). Then a constant
pressure P n

i is computed in each bubble Bn
i (bottom left). Finally, a generalized

Stokes problem is solved to obtain the velocity vn and the pressure pn in the
new liquid domain Ωn, taking into account the pressure P n

i on the liquid-gas
interface (bottom right).

The algorithm for detecting a connected component in the gas domain is the
following. First, given a point P in the gas domain Λ\Ωn, we search for a func-
tion u such that −∆u = δP in Λ\Ωn, with u = 0 on Ωn and u continuous. The
physical interpretation of this problem in two space dimensions is the following:
an elastic membrane is placed over the cavity Λ, deformation being impossible
in the liquid domain, a point force being applied at a given point P .

Since the solution u to this problem is strictly positive in the connected com-
ponent containing point P and vanishes outside, the first bubble is determined
as the set of points of Λ where u is different from zero. This procedure is then
repeated to recognize one connected component after the other, see Fig. 6.

Recall that k(t) is the number of connected components of the gas domain
at time t and Bi(t) is the i-th connected component (i.e. bubble number i).
Let ξ(t) be the bubble numbering function, negative in the liquid region Ω(t)

8

and equal to i in bubble Bi(t). At each time step approximations kn, ξn, Bn
i

of k(tn), ξ(tn), Bi(t
n) are computed as follows. The algorithm is initialized

by setting the number of bubbles kn to 0. Also, the function ξn is set to 0 in
the whole gas domain Λ\Ωn and to −1 in the liquid domain Ωn. The goal is
to assign to each point x in the gas an integer value ξn(x) 6= 0, the so-called
bubble number. The algorithm is illustrated in Fig. 6 and is the following : set
Θn = {x ∈ Λ : ξn(x) = 0}.

While Θn 6= ∅, do :

1. Choose a point P in Θn

2. Solve the following problem: Find u : Λ → R which satisfies:

−∆u = δP , in Θn ,

u = 0, in Λ\Θn ,

[u] = 0, on ∂Θn ,

(8)

where δP is Dirac delta function at point P and [u] is the jump of u
through ∂Θn;

3. Increase the number of bubbles kn at time tn, kn = kn + 1;

4. Define the bubble of gas number kn: Bn
kn = {x ∈ Θn : u(x) 6= 0};

5. Update the bubble numbering function ξn(x) = kn, ∀x ∈ Bn
kn ;

6. Update Θn for the next iteration,

Θn = {x ∈ Λ : ξn(x) = 0} .

The cost of this original numbering algorithm is bounded by the cost of
solving kn times a Poisson problem in the gas domain. Note that the size of the
linear system related to this Poisson problem decreases each time that a bubble
has been tracked. In the numerical experiments, the number kn is usually not
greater than 500 and the CPU time used for bubbles computations is always
less than 10 percent of the total CPU time.

Once the connected components of gas are numbered, an approximation P n
i

of the pressure in bubble i at time tn is computed following the description of
Section 2. The pressure is constant inside each bubble of gas and is computed
with the ideal gas law (5), except for bubbles in contact with a valve which have
atmospheric pressure, see Fig 1.

In the case of a single bubble traveling in the liquid, see Fig. 2, the law of
ideal gas yields P nV n = Pn−1V n−1, which means that the number of molecules
inside the bubble is conserved between time tn−1 and tn. In the case when
two bubbles merge, see Fig. 3, this relation becomes P n

1 V
n
1 = Pn−1

1 V n−1
1 +

Pn−1
2 V n−1

2 . The third case is when a bubble splits onto two. Each of the
parts of the bubble 1 at time tn−1 contributes to a bubble Bn

j , j = 1, 2 at

time tn. The volume fraction of bubble Bn−1
1 which contributes to bubble Bn

j

is noted V
n−1/2
1,j . The computation of the pressure is then decomposed in two

9

���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������

�����������
�����������
�����������

�����������
�����������
�����������

���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������

�����������
�����������
�����������

�����������
�����������
�����������

	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Iteration 0 Iteration 1

�����������
�����������
�����������

�����������
�����������
�����������

Iteration 2 Iteration 3

Ωn (liquid)

Θn

×P

Θn Θn

Ωn

Θn

ξn = 1

×P

Θn

Ωn

Θn ×P

ξn = 1

ξn = 2

Ωn

ξn = 1

ξn = 2ξn = 3

Figure 6: Numbering algorithm of the gas bubbles. Initially the function ξn

equals zero everywhere in the gas domain. The domain Θn corresponds to the
set of points in the gas region that have no bubble number (ξn(x) = 0, shaded
region). At each iteration of the algorithm a point P is chosen in Θn. Problem
(8) is solved and a new bubble is numbered. Then, domain Θn is updated and
another point P ∈ Θn is chosen. The algorithm stops when Θn = ∅.

steps, as illustrated in Fig. 7. First the volume fraction contributions V
n−1/2
1,j

are computed for j = 1, 2. This allows to determine the amount of molecules
trapped in each of the two bubbles j = 1, 2. Then the pressure in the bubble
Bn

j is computed by taking into account the compression/decompression of each
of these bubbles, that is:

Pn
j = Pn−1

1

V
n−1/2
1,j

V n
j

, j = 1, 2 . (9)

Finally the diffusion step consists in solving a generalized Stokes problem on
the domain Ωn using the predicted velocity vn−1/2 and the boundary condition
(4). The following implicit Euler scheme is used:

ρ
vn − vn−1/2

τn
− 2div (µD(vn)) + ∇pn = f in Ωn, (10)

div vn = 0 in Ωn. (11)

10

Pn−1
1 , V n−1

1 , Bn−1
1

Pn−1
1

V
n−1/2
1,1

Pn−1
1

V
n−1/2
1,2

Bn
1 , P

n
1 , V

n
1

Bn
2 , P

n
2 , V

n
2

t = tn−1 t = tn

Figure 7: At each time step, the splitting of one bubble is decomposed in two

parts. First the fraction of volumes V
n−1/2
1,j , j = 1, 2 are computed. Then, the

pressure P n
i is computed from (9).

The boundary conditions on the free surface between the liquid and the bubble
number i depend on the gas pressure P n

i and are given by (4). The weak
formulation corresponding to (10) (11) and (4) therefore consists in finding vn

and pn such that vn satisfies the essential boundary conditions on the boundary
of the cavity Λ and

∫

Ωn

vn − vn−1/2

τn
· wdx+ 2µ

∫

Ωn

D(vn) : D(w)dx −

∫

Ωn

pn div wdx

−

∫

Ωn

f · wdx+
kn

∑

i=1

Pn
i

∫

∂Ωn∩∂Bn
i

n · wdS −

∫

Ωn

q div vndx = 0 , (12)

for all test functions (w, q) such that w vanishes on the boundary of the cavity
where essential boundary conditions are enforced.

4 A Two-Grids Method

Advection and diffusion phenomena being now decoupled, Eq. (6) (7) are solved
using the method of characteristics on a structured mesh of small cells in order
to reduce numerical diffusion and have an accurate approximation of the liquid
region, see Fig. 8.

Assume that the structured grid is made out of cubic cells of size h, each cell
being labeled by indices (ijk). Let ϕn−1

ijk and vn−1
ijk be the approximate value of

ϕ and v at the center of cell number (ijk) at time tn−1. The unknown ϕn−1
ijk is

the volume fraction of liquid in the cell ijk, and is the numerical approximation
of the characteristic function ϕ at time tn−1 which is piecewise constant on each
cell of the structured grid. The advection step on cell number (ijk) consists
in advecting ϕn−1

ijk and vn−1
ijk by τnvn−1

ijk and then projecting the values on the
structured grid. An example of cell advection and projection is presented in
Fig. 9 in two space dimensions.

Notice that the use of this characteristic method is well adapted to the
structured cartesian grid, and the overlapping domains are easy to compute. In

11

Figure 8: Two-grids method, representation in two space dimensions. Advection
step is solved on a structured mesh of small cubic cells (right), while diffusion
step and bubbles treatment are solved on a finite element unstructured mesh
(right).

index j

index i

ϕn−1
ij

τnvn−1
ij

ϕn−1

ij

16 3
ϕn−1

ij

16

9
ϕn−1

ij

163
ϕn−1

ij

16

Figure 9: An example of two dimensional advection of ϕn−1
ij by τnvn−1

ij , and
projection on the grid. The advected cell is represented by the dashed lines.
The four cells containing the advected cell receive a fraction of ϕn−1

ij , according
to the position of the advected cell.

order to enhance the quality of the volume fraction of liquid, post-processing
procedures have been implemented. In particular, a simplified implementation
of the SLIC (Simple Linear Interface Calculation) algorithm, see [21], is used to
reduce the numerical diffusion. We refer to [18, 19] for a detailed description in
two and three space dimensions.

Once values ϕn
ijk and v

n−1/2
ijk have been computed on the cells, values of the

fraction of liquid ϕn
P and of the velocity field v

n−1/2
P are computed at the nodes

P of the finite element mesh. Many approaches may be used here: multigrids
restriction methods, see e.g. [12], allows to compute a local interpolation of the

12

value of each field on the unstructured grid by taking into account the cells in a
small neighborhood of the grid point. On the other hand, projection techniques
permit to transfer one field from the structured grid to the unstructured mesh in
a conservative way, see for instance [15]. It consists in computing the projection
(in the L2 sense) of a piecewise constant approximation of vn−1/2 on the cells on
the piecewise linear finite element space defined on the unstructured mesh. This
method requires the computation of the fraction of volumes of cells intersecting
the finite elements, which may be very CPU time consuming in three space
dimensions. Figure 10 (left) illustrates the situation in the two-dimensional
case.

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

PJ

Cij �������
�������
�������

�����
�����
�����
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�����
�����
�����
�����

�����
�����
�����
�����

��
��
��
��

�����
�����
�����
����������
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
����� �����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�������
�������
�������
�������

 � � �
 � � �
 � � �
 � � �

!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!

"�"�"�"
"�"�"�"
"�"�"�"
"�"�"�"

#�#�#�#
#�#�#�#
#�#�#�#
#�#�#�#

$�$�$
$�$�$
$�$�$
$�$�$%�%�%�%

%�%�%�%
%�%�%�%
&�&�&
&�&�&
&�&�&
'�'�'�'
'�'�'�'
'�'�'�'
(�(�(�(
(�(�(�(
(�(�(�(

)�)�)�)
)�)�)�)
)�)�)�)
��*�*
��*�*
��*�*

+�+�+
+�+�+
+�+�+
,�,�,
,�,�,
,�,�,

-�-�-
-�-�-
-�-�-
.�.�.
.�.�.
.�.�.

/�/�/
/�/�/
/�/�/
0�0�0
0�0�0
0�0�0

1�1�1
1�1�1
1�1�1
2�2�2
2�2�2
2�2�23�3�3
3�3�3
3�3�3
4�4�4
4�4�4
4�4�4

5�5�5
5�5�5
5�5�5
6�6�6
6�6�6
6�6�6

7�7�7
7�7�7
7�7�7
8�8�8
8�8�8
8�8�8

9�9�9
9�9�9
9�9�9
:�:�:
:�:�:
:�:�:

;�;�;�;
;�;�;�;
;�;�;�;
<�<�<�<
<�<�<�<
<�<�<�<

=�=�=�=
=�=�=�=
=�=�=�=
>�>�>�>
>�>�>�>
>�>�>�>

?�?�?�?
?�?�?�?
?�?�?�?
@�@�@
@�@�@
@�@�@A�A�A�A
A�A�A�A
A�A�A�A
B�B�B�B
B�B�B�B
B�B�B�B

C�C�C�C
C�C�C�C
C�C�C�C
D�D�D�D
D�D�D�D
D�D�D�D

E�E�E
E�E�E
E�E�E
F�F�F
F�F�F
F�F�F

G�G�G
G�G�G
G�G�G
H�H�H
H�H�H
H�H�H

I�I�I
I�I�I
I�I�I
J�J�J
J�J�J
J�J�J

K�K�K
K�K�K
K�K�K
L�L�L
L�L�L
L�L�LM�M�M

M�M�M
M�M�M
N�N�N
N�N�N
N�N�N

PJ

Cij

Figure 10: Projection methods between the two grids. Left: conservative pro-
jection method, the shaded region contributes to the value of the approximation
at the grid point PJ . Right: approximation by taking into account the contri-
butions of the cells with center of mass inside the finite element.

In order to reduce the CPU time of our method, we consider an approxima-
tion of this projection procedure, which is illustrated in Fig. 10 (right). For any
vertex P of the finite element mesh let ψP be the corresponding basis function
(i.e. the continuous, piecewise linear function having value one at P , zero at the
other vertices). We consider all the tetrahedrons K containing vertex P and
all the cells (ijk) having center of mass Cijk contained in these tetrahedrons.
Then, ϕn

P , the volume fraction of liquid at vertex P and time tn is computed
using the following formula:

ϕn
P =

∑

K
P∈K

∑

ijk
Cijk∈K

ψP (Cijk)ϕn
ijk

∑

K
P∈K

∑

ijk
Cijk∈K

ψP (Cijk)
.

The same kind of formula is used to obtain the predicted velocity vn−1/2 at
the vertices of the finite element mesh. When these values are available at the

13

vertices of the finite element mesh, the liquid region is defined as follows. An
element of the mesh is said to be liquid if (at least) one of its vertices P has
a value ϕn

P > 0.5. The computational domain Ωn used for solving (12) is then
defined to be the union of all liquid elements.

The numbering of the bubbles of gas requires to solving several Poisson
problems (8). These problems are solved on the finite element unstructured
mesh, using piecewise linear finite elements. The pressure inside each bubble
of gas is computed with (9) and the approximations of the fractions of volumes

V
n−1/2
i,j are computed on the finite element mesh. Details may be found in [3].

Then finite element techniques are used for solving (12) on an unstructured
mesh. Many existing methods permit to solve a Stokes problem on a finite ele-
ment mesh made out of tetrahedrons, see for instance [22] for an non-exhaustive
review. Here a Galerkin Least Squares method (see for instance [9]) is used.

Finally, the values of the solution at each grid point of the finite element
mesh should be projected on each cell of the structured grid. Again, the exact
projection of a piecewise linear approximation on the piecewise constant function
space on the structured grid is replaced by an approximated procedure. For each
cell Cijk of the structured grid, the value of the solution in this cell is obtained by
taking the restriction of the piecewise linear approximation on the unstructured
mesh at the center of mass of the cell Cijk .

Numerical experiments reported in [18, 19] have shown that choosing the
size of the cells of the structured mesh approximately 5 to 10 times smaller
than the size of the finite elements is a good choice to reduce numerical diffu-
sion. Numerical experiment in Sect. 5 shows that the conservation of liquid is
guaranteed even if the projection method illustrated in Fig. 10 (right) is not
exact. Furthermore, since the characteristics method is used, the time step is
not restricted by any CFL condition.

Remark: In order to take into account cases which involve a complex shape
of the cavity, a special data structure has been implemented in order to reduce
the memory requirements used to store the cell data, see also [24]. An example
is proposed in Fig. 11. The cavity containing the liquid is meshed into tetra-
hedrons. Without any particular cells data structure, a great number of cells
would be stored in the memory without being never used. The data structure
we have adopted uses three levels to define the cells. At the coarsest level, the
so-called window level, the cavity is meshed into blocks, which are glued to-
gether. Each window is then subdivided into cubes, this intermediate level is
called the block level. Finally, each block is cut into smaller cubes, namely the
cells (ijk). When a block is free of liquid (empty), it is switched off, that is to
say the memory corresponding to the cells is not allocated. When liquid enters
a block, the block is switched on, that is to say the memory corresponding to
the cells is allocated.

14

��������� �����������������
�����������������
�����������������
�����������������

�����
�����
�����
�����
�����
�����
�����

����������������������������
�������������������
�������������������
�������������������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

���������

i

j

k

finite element mesh

(tetrahedrons)

window level

block level

cell level

Figure 11: The hierarchical Window-block-Cell data structure used to imple-
ment the cells advection.

5 Numerical Results

Numerical results are presented to validate our model. All the computations
were performed on a computer with single processor Pentium Xeon 2.8 GHz
CPU, 3 Gb Memory and running under Linux operating system.

Accuracy of the Two-Grids Projection Techniques. The goal of this
paragraph is to validate the projection technique between the two grids.

A circle of liquid in two space dimensions is translated with given velocity
and without external forces. The cavity domain is the 0.1 m ×0.1 m square and
the center of a circle of radius 0.015 m is initially located at (0.02, 0.05). The
advection velocity is horizontal and equals to 1 m/s. Density and viscosity are
taken to be respectively ρ = 1000 kg/m2 and µ = 0.01 kg/(ms). Three finite
element meshes respectively made out of 40 × 40 squares, 80 × 80 squares and
120× 120 squares, each divided in 4 triangles, are used. The time step is 0.01 s
and 6 time steps are made to translate the circle of liquid from one side of the
domain to the other. The exact surface of the liquid domain is 6.2832 ·10−4 m2.

The volume (or surface) of the liquid domain can be computed on the struc-
tured grid of cells or on the finite element mesh. In this case, since the velocity
is imposed, the error on the computation of the volume on the finite element
mesh comes only from the projection technique.

In Tab. 1, we consider various number of cells for each finite element mesh
and we discuss the conservation of the surface of the initial liquid domain.
According to Tab. 1, the volume on the structured grid is exact when the number
of cells is sufficiently large. The volume computed on the finite element mesh

15

is less accurate but converges when the finite element mesh size decreases. The
convergence order is approximately one, i.e. the error on the computation of
the volume on the finite element mesh is divided by two when the sizes of the
finite element mesh and the structured grid are divided by two.

Coarse FE mesh Number of Cells Volume Cells Volume F.E.
60X60 0.000567 0.000641

120X120 0.000628 0.000687
240X240 0.000628 0.000687
480X480 0.000628 0.000687

Middle FE mesh Number of Cells Volume Cells Volume F.E.
60X60 0.000503 0.000570

120X120 0.000628 0.000664
240X240 0.000628 0.000666
480X480 0.000628 0.000666

Fine FE mesh Number of Cells Volume Cells Volume F.E.
120X120 0.000619 0.000666
240X240 0.000628 0.000663
480X480 0.000628 0.000656
960X960 0.000628 0.000649

Table 1: Translation of a mass of liquid with given velocity. Computed value
of the volume on the structured grid of cells and on the finite element mesh
for various meshes. First table: coarse finite element mesh, various numbers of
cells, second table: middle finite element mesh, various numbers of cells, third
table: fine finite element mesh, various numbers of cells.

S-shaped Channel. An S-shaped channel lying between two horizontal plates
is filled. Results are compared with experiment [28]. The channel is contained
in a 0.17 m×0.24 m×0.08 m rectangle. Water is injected with constant velocity
8.7 m/s which corresponds to the experimental value reported in [28]. A valve
is located at the top of the channel, as in Fig. 1, allowing gas to escape.
Density and viscosity are taken to be respectively ρ = 1000 kg/m3 and µ = 0.01
kg/(ms) and initial pressure in the gas is Patmo = 101300.0 Pa. When comparing
numerical results to experimental ones, we have observed that the liquid goes
faster in the simulations than in the experiments. This is probably due to
enforced slip boundary conditions. On the other hand, due to large Reynolds
numbers (Re ' 106), no slip boundary conditions are not conceivable since they
would require extremely fine layered meshes along the boundary of the cavity.
Slip boundary conditions are then enforced and a turbulent viscosity is added,
the coefficient αT being equal to 4h2, see [31]. Surface tension effects can be

16

neglected since the ratio between Capillary number and Reynolds number is
very small (Ca ' 1.5), see e.g. [25].

Several meshes are considered. The coarser mesh has 20898 nodes and 96270
elements; the middle mesh has 74241 nodes and 375696 elements while the fine
mesh is made out of 160050 nodes and 839160 elements.

Numerical results are first presented with the coarser mesh and αT = 4h2.
The final time is T = 0.00532 s and the time step is τ = 0.0001 s. In Fig.
12, the experiment is compared to 3D computations when the influence of the
surrounding gas is taken into account. Notice that, if the gas is not taken into
account, the bubbles of trapped gas inside the cavity vanish instantaneously,
see [3]. The CPU times for the simulations are approximately 319 mn without
taking into account the gas effect and 344 mn with the bubbles computations.
Most of the CPU time is spent to solve Stokes problem.

 �� �� �� ��

Figure 12: S-shaped channel: influence of gas bubbles. Computations with
coarse mesh and αT = 4h2. First row: 3D results with bubbles in the middle
plane and second row: experimental results [28]. First column: time equals 7.15
ms, second column: 25.3 ms, third column: 39.3 ms and fourth column: 53.6
ms.

The influence of the mesh size is reported in Fig. 13. The time steps are
τ = 0.0001 s for the coarse mesh, τ = 0.00008 s for the middle mesh and
τ = 0.00005 s for the fine mesh. The size of the cells of the structured mesh
used for advection step is approximately 5 to 10 times smaller than the size of
the finite elements, see [19]. The total CPU time for 3D computations to reach
final time is approximately 29 hours for the middle mesh and 110 hours for the
finer mesh.

17

 ��

 ��

coarse mesh middle mesh fine mesh

Figure 13: S-shaped channel : convergence with mesh size. Computations with
gas bubbles, αT = 4h2, 3D results. Left: coarse mesh, middle: middle mesh,
right: fine mesh and extreme right: experimental results [28]. First row: time
equals 25.3 ms and second row: 39.3 ms.

The computed liquid flow goes a little bit too fast compared to the exper-
iment. This is mainly due to the slip boundary conditions on the walls of the
cavity. Moreover, the turbulence model we use is very simple. On the other
hand, the behavior of the bubbles of gas is well-simulated throughout the whole
simulation.

A mold filling example. A semi-circular mold is filled with liquid. The
geometry is illustrated in Fig. 14. The radius of the base half-circle is 1 m,
while the radius of the upper part is 1.4 m. Liquid is injected from the top with
velocity 2 m/s. Density and viscosity are taken to be respectively ρ = 1000
kg/m3 and µ = 1 kg/(ms) and initial pressure in the gas is Patmo = 101300.0
Pa. Valves are located at each end of the arms to let the gas escape. We
consider the two-dimensional problem. The finite element mesh is made out of
21921 nodes and 43200 elements. The structured grid is made out of 2′400′000
cells. The time step is τ = 0.01 s and the final time of simulation is T = 4 s.
Numerical results are illustrated in Fig. 14.

Figure 15 illustrates the results in the three-dimensional case. The inflow
velocity is equal to 8.7 m/s. The finite element mesh is made out of 47137
nodes and 37152 tetrahedrons. The structured grid is made out of 1′200′000
cells. Numerical results show that the symmetry is conserved, but numerical

18

Figure 14: Mold Filling 2D: Left to right, top to bottom: representation of the
liquid-gas interface at times t = 0.1, 0.5, 1.0, 1.5, 2.0 and 3.0 s.

diffusion is large due to the coarser mesh.

6 An Extension to Some Obstacle Problems

The projection method may be used for other problems. We present here an
extension of this method to obstacle problems. In this case, the use of both
a continuous and a discontinuous approximations is strongly suggested by the
structure of the problem.

The idea is to study the coupling of continuous and discontinuous approx-
imations of various aspects of the same problem. In this feasibility study, we
investigate a particular obstacle problem. The nature of the obstacle problem
implies that a continuous approximation of the solution of the obstacle problem
is more accurate. On the other hand, discontinuous approximations have been
chosen for the diffusion problem since they are mostly used in the finite volumes
and finite differences methods.

19

Figure 15: Mold Filling 3D: Left to right, top to bottom: representation of the
liquid-gas interface at times t = 0.5, 1.0, 2.0 and 4.0 s.

The problem is the following. Let Ω be a bounded domain of R
d, d = 2, 3

with boundary Γ = ∂Ω and let γ be a closed variety of dimension d−1 included
in Ω (for instance a line if Ω ⊂ R

2). Let ψ : γ → R
d and g : Γ → R

d be
given continuous functions. Let ε be a strictly positive parameter and denote
max(0,−v) by v−. We are interested in solving the following penalty problem:
for t > 0, find u(t) ∈ H1(Ω) satisfying

α

∫

Ω

∂u

∂t
vdx+ χ

∫

Ω

∇u · ∇vdx−
1

ε

∫

γ

(u− ψ)2
−
vdγ =

∫

Γ

gvdΓ , (13)

for all v ∈ H1(Ω) with initial condition u(0) = u0 given. This problem may
appear in the frame of variational inequalities, see for instance [7, 10]. It cor-
responds to a diffusion equation with Neumann boundary conditions on Γ and
whose solution is constrained to be larger than ψ on the curve γ.

20

Let τ > 0 be a given time step. The problem (13) is discretized by using
an implicit Euler scheme. Given u0 = u0, the problem is equivalent to find for
each n ≥ 0, un+1 ∈ H1(Ω) satisfying, for all v in H1(Ω):

α

∫

Ω

un+1 − un

τ
vdx+ χ

∫

Ω

∇un+1 · ∇vdx −
1

ε

∫

γ

(un+1 − ψ)2
−
vdγ =

∫

Γ

gvdΓ .

The use of a discontinuous approximation of u is clearly justified for the
resolution of diffusion problems, such as the heat equation. On the other hand,
the penalty term requires the use of a continuous approximation in order to
evaluate u on the curve γ. In order to decouple these two approximations, a
time splitting scheme is used, see [17]. This implies that, at each time step, two
subproblems are treated successively. First a diffusion problem is solved, that
is to find un+1/2 ∈ H1(Ω) satisfying:

α

∫

Ω

un+1/2 − un

τ
vdx+ χ

∫

Ω

∇un+1/2 · ∇vdx =

∫

Γ

gvdΓ, ∀v ∈ H1(Ω) . (14)

Then the penalty problem is solved, that is to find un+1 ∈ H1(Ω) satisfying:

α

∫

Ω

un+1 − un+1/2

τ
vdx −

1

ε

∫

γ

(un+1 − ψ)2
−
vdγ = 0, ∀v ∈ H1(Ω) . (15)

The resolution of (15) allows to correct un+1/2 so that u ≥ ψ on γ (in a weak
sense).

Let us consider the two-dimensional case. A two-grids method is composed
by a regular grid of square cells and a nested finite element structured triangu-
lation, as illustrated in Fig. 16 in the case of a square domain Ω. Let Cij denote
the cell indexed by (i, j). Let ϕij , i, j = 1, . . . , N be the basis functions of the
space of piecewise constant functions on the regular grid of small cells. Let Th

be the finite element triangulation and PJ , J = 1, . . . , N , the grid points of Th.
Let ϕJ , J = 1, . . .N , denote the basis functions of the piecewise linear finite
element space based on Th.

The problem (14) is solved with an implicit centered finite differences scheme.

At each time step, n ≥ 0, it consists in finding u
n+1/2
ij , i, j = 1, . . . , N satisfying:

α
u

n+1/2
ij − un

ij

τ
+ χ

4u
n+1/2
ij − u

n+1/2
i+1j − u

n+1/2
i−1j − u

n+1/2
ij+1 − u

n+1/2
ij−1

h2
= 0

for i, j = 2, . . . N − 1 and un
ij is given. Near the boundary, the finite differences

scheme should be modified in order to take into account the Neumann boundary
condition given by g.

Once the constant values u
n+1/2
ij on each cell Cij are computed, the approx-

imation un+1/2 is transposed on the grid points of the finite element mesh in

21

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

��

�
�

�
�

�
��

�
�

�
�

��

�
�

�
�

�
��

��
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

��

�
�

�
�

�
��

�
�

�
�

��

�
�

�
�

�
����

Figure 16: A two-grids method: left: structured grid of squares, right: finite
element mesh of triangles.

order to solve the obstacle problem (15). Let us denote by un
D the piecewise con-

stant approximation of un on the grid of squares and by un
h the approximation

of un, which is piecewise linear on each triangle of the finite element mesh. A

projection method is described to compute u
n+1/2
h starting from u

n+1/2
D , namely:

∫

Ω

u
n+1/2
h ϕJdx =

∫

Ω

u
n+1/2
D ϕJdx, J = 1, . . . , N . (16)

Once the values of u
n+1/2
h are obtained on the finite element mesh grid points

PJ , (15) can be solved with continuous piecewise linear finite elements, i.e. find
un+1

h satisfying, for all v ∈ H1(Ω):

α

∫

Ω

un+1
h − u

n+1/2
h

τ
vdx −

1

ε

∫

γ

(un+1
h − ψ)2

−
vdγ = 0 .

This implicit problem is well-posed but strongly nonlinear. It is then solved
with a Newton method, as in [10]. Let us denote by u(k) the kth iterate of

the Newton method. Set u(0) = u
n+1/2
h and ūk = u(k) − u(k+1). The New-

ton method consists, at each iteration, in finding ūk satisfying the following
linearized problem:

∫

Ω

ūkvdx+
2τ

αε

∫

γ

(u(k) − ψ)−ūkvdγ =

∫

Ω

u(k)vdx −
τ

αε

∫

γ

(u(k) − ψ)2
−
vdγ

−

∫

Ω

u
n+1/2
h vdx .

and by setting u(k+1) = u(k) − ūk. The integrals on γ are computed numerically
by the introduction of M integration points on γ, called control points.

22

Finally the solution un+1
h is projected back onto the grid of square cells, that

is un+1
D is computed by:

∫

Ω

un+1
D ϕijdx =

∫

Ω

un+1
h ϕijdx . (17)

Numerical Results. An example is presented to validate our methodol-
ogy in the framework of obstacle problems. The two-dimensional case Ω =
(−1,+1) × (−1,+1) is considered. The obstacle line γ is defined by γ =
{

(x, y) ∈ R
2 : x2 + y2 = (0.7)2

}

. Let M be the number of control points on
γ and let the control points Qk, k = 1, . . . ,M be uniformly distributed on the
circle γ. The initial condition u0 is identically zero in Ω. Let the function ψ be
identically zero on γ and g : Γ → R is given by:

g(x, y, t) =

−30 sin(6πt), if x = −1,
30 sin(6πt), if x = +1,
0, otherwise .

The physical parameters are α = 1, χ = 1 and the time step is τ = 0.05. The
diffusion step is solved with a preconditioned conjugate gradient algorithm with
a stopping criterion of 10−3 on the discrepancy. The linear system appearing in
the Newton method are solved with a GMRES algorithm with a stopping cri-
terion of 10−6 on the discrepancy. The Newton method is assumed to converge
if the relative difference between two consecutive iterates is less than 10−4. It
is clear from [10] that the Newton and conjugate gradient solvers have fast con-
vergence properties. The CPU time used for the projections of the numerical
solution from one mesh to the other is negligible with respect to the resolution
of the linear systems in the diffusion or obstacle steps.

The case N = 40 and M = 500 is illustrated on Fig. 17 for a parameter
value of ε = 10−20. Note that the solution is oscillating slightly on the curve γ
but with amplitude never larger than 10−3 and that the solution remains larger
than zero on γ at each time step.

7 Conclusion

A numerical method for the simulation of incompressible liquid-compressible
gas flows with free surfaces has been presented. The characteristic function of
the liquid domain is used to describe the interface. The unknowns are velocity
and pressure in the liquid and constant pressure in each connected component
of gas surrounded by the liquid.

A splitting algorithm is used to decouple physical phenomena and two grids
(one structured grid and one unstructured grid) are used. A projection method
permits to interpolate the solutions from one grid to the other. The two-grids
method has been extended to obstacle problems for which introducing both a
continuous and a discontinuous approximation of the solution is useful.

Numerical results in the framework of liquid-gas flow or in the framework of
obstacle problems have shown the efficiency and accuracy of our method.

23

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−4

−3

−2

−1

0

1

2

3

4

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−4

−3

−2

−1

0

1

2

3

4

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−4

−3

−2

−1

0

1

2

3

4

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−4

−3

−2

−1

0

1

2

3

4

Figure 17: Numerical solution of the obstacle problem at times t = 0.05, 0.1, 0.15
and 0.2 s.

Acknowledgments

The authors wish to thank Marco Picasso and Prof. Jacques Rappaz, Institut
d’Analyse et Calcul Scientifique, Ecole Polytechnique Fédérale de Lausanne,
1015 Lausanne, Switzerland for their contribution in the fluid flow part of this
paper and Vincent Maronnier, Calcom Company, ESI group, Parc Scientifique,
CH-1015 Lausanne for implementation support. The Calcom Company is ac-
knowledged for kindly providing the CalcoSoftTM Pre- and Post-Processors.
The support of LACSI/DOE via Los Alamos National Laboratories is also ac-
knowledged, with particular thanks to D. B. Kothe and J. Sicilian.

References

[1] R. Abgrall, B. Nkonga, and R. Saurel. Efficient Numerical Approximation
of Compressible Multi-Material Flow for Unstructured Meshes. Computers
& Fluids, 32:571–605, 2003.

[2] B. Bunner and G.Tryggvason. Dynamics of Homogeneous Bubbly Flows
Part 1. Rise Velocity and Microstructure of the Bubbles. J. Fluid Mech.,
466:17–52, 2002.

24

[3] A. Caboussat, V. Maronnier, M. Picasso, and J. Rappaz. Numerical Sim-
ulation of Three Dimensional Free Surface Flows with Bubbles. Lecture
Notes in Computational Science and Engineering, Springer-Verlag series,
35:69–86, 2003.

[4] R. Caiden, R. P. Fedkiw, and C. Anderson. A Numerical Method for
Two-Phase Flow Consisting of Separate Compressible and Incompressible
Regions. J. Comp. Phys., 166:1–27, 2001.

[5] Y. C. Chang, T. Y. Hou, B. Merriman, and S. Osher. A Level Set Formu-
lation of Eulerian Interface Capturing Methods for Incompressible Fluid
Flows. J. Comp. Phys., 124(2):449–464, 1996.

[6] R. Codina and O. Soto. A Numerical Model to Track Two-Fluid Interfaces
Based on a Stabilized Finite Element Method and a Level Set Technique.
Int. J. Numer. Meth. Fluids, 40:293–301, 2002.

[7] G. Duvaut and J.-L. Lions. Inequalities in Mechanics and Physics.
Springer-Verlag, Berlin, 1976.

[8] R. P. Fedkiw, B. Merriman, and S. Osher. Numerical Methods for a One-
Dimensional Interface Separating Compressible and Incompressible Flows.
In V. Venkatakrishnan, M. Salas, and S. Chakravarthy, editors, Barriers
and Challenges in Computational Fluid Dynamics, pages 155–194. Kluwer
Academic Publishers, 1998.

[9] L. P. Franca and S. L. Frey. Stabilized finite Element Method: II. The
incompressible Navier-Stokes equations. Comp. Meth. Appl. Mech. Engrg,
99:209–233, 1992.

[10] R. Glowinski, Y. Kuznetzov, and T.-W. Pan. A
penalty/newton/conjuguate gradient method for the solution of ob-
stacle problems. C. R. Acad. Sci. Paris, Ser. I, 336:435–440, 2003.

[11] D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, and S. Zaleski. Volume-of-
Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-
Dimensional Flows. J. Comp. Phys., 152:423–456, 1999.

[12] W. Hackbusch. Multi-Grid Methods and Applications. Springer-Verlag,
1985.

[13] C. W. Hirt and B. D. Nichols. Volume of Fluid (VOF) Method for the
Dynamics of Free Boundaries. J. Comp. Phys., 39:201–225, 1981.

[14] M. S. Kim, J. S. Park, and W. I. Lee. A New VOF-Based Numerical Scheme
for the Simulation of Fluid Flow with Free Surface. Part II: Application
to the Cavity Filling and Sloshing Problems. Int. J. Num. Meth. Fluids,
42:791–812, 2003.

25

[15] A. Kuprat. Truchas physics and algorithms, chapter 8. Technical Report
LA-UR-03-9109, Los Alamos National Laboratory, 2003.

[16] J. Li and Y. Renardy. Numerical Study of Flows of Two Immiscible Liquids
at Low Reynolds Number. SIAM Rev., 42(3):417–439, 2000.

[17] G. I. Marchuk. Splitting and Alternating Direction Methods, volume 1 of
Handbook of Numerical Analysis (P.G. Ciarlet, J.L. Lions eds), pages 197–
462. Elsevier, 1990.

[18] V. Maronnier, M. Picasso, and J. Rappaz. Numerical Simulation of Free
Surface Flows. J. Comput. Phys., 155:439–455, 1999.

[19] V. Maronnier, M. Picasso, and J. Rappaz. Numerical Simulation of Three
Dimensional Free Surface Flows. Int. J. Num. Meth. Fluids, 42(7):697–716,
2003.

[20] W. Mulder, S. Osher, and J.A. Sethian. Computing Interface Motion in
Compressible Gas Dynamics. J. Comp. Phys., 100:209–228, 1992.

[21] W.F. Noh and P. Woodward. SLIC (Simple Line Interface Calculation),
volume 59 of Lectures Notes in Physics, pages 330–340. Springer-Verlag,
1976.

[22] M. Picasso and J. Rappaz. Stability of Time-Splitting Schemes for the
Stokes Problem with Stabilized Finite Elements. Numerical Methods for
Partial Differential Equations, 17(6):632–656, 2001.

[23] O. Pironneau. Finite Element Methods for Fluids. Wiley, Chichester, 1989.

[24] M. Rappaz, J.L. Desbiolles, C.A. Gandin, S. Henry, A. Semoroz, and
P. Thevoz. Modelling of solidification microstructures. Material Science
Forum, 329(3):389–396, 2000.

[25] Y. Renardy and M. Renardy. PROST : A Parabolic Reconstruction of Sur-
face Tension for the Volume-Of-Fluid Method. J. Comp. Phys., 183:400–
421, 2002.

[26] W.J. Rider and D.B. Kothe. Reconstructing Volume Tracking. J. Comp.
Phys., 141:112–152, 1998.

[27] R. Scardovelli and S. Zaleski. Direct Numerical Simulation of Free Surface
and Interfacial Flows. Annual Review of Fluid Mechanics, 31:567–603,
1999.

[28] M. Schmid and F. Klein. Einfluß der Wandreibung auf das Füllverhalten
Dünner Platten. Preprint, Steinbeis Transferzentrum, Fachhochschule
Aachen, 1996.

[29] K.-M. Shyue. A Volume-Of-Fluid type Algorithm for Compressible Two-
Phase Flows. Intl. Series of Numerical Mathematics, 130:895–904, 1999.

26

[30] O. Soto and R. Codina. A Numerical Model for Mould Filling using a
Stabilized Finite Element Method and the VOF Technique. submitted to
Int. J. Num. Meth. Fluids, preprint.

[31] Ch. G. Speziale. Analytical Methods for the Development of Reynolds-
Stress Closures in Turbulence. Annual Review of Fluid Mechanics, 23:107–
157, 1991.

[32] M. Sussman, E. Fatemi, P. Smereka, and S. Osher. An Improved Level
Set Method for Incompressible Two-Phase Flows. Computers and Fluids,
27(5-6):663–680, 1998.

[33] M. Sussman and E. G. Puckett. A Coupled Level Set and Volume-of-Fluid
Method for Computing 3D and Axisymmetric Incompressible Two-Phase
Flows. J. Comp. Phys., 162:301–337, 2000.

[34] S.O. Unverdi and G. Tryggvason. Computations of Multi-Fluid Flows.
Physica D, 60:70–83, 1992.

[35] S.P. van der Pijl, A. Segal, and C. Vuik. A Mass-Conserving Level-Set
(MCLS) Method for Modeling of Multi-Phase Flows. Technical Report
03-03, Delft University of Technology, 2003.

27

	Home
	TOC
	Go Back

