
An ExtensibleMessage-OrientedOffload Model for High-Performance
Applications

�

PatriciaGilfeatherandArthur B. Maccabe
ScalableSystemsLab

Departmentof ComputerScience
Universityof New Mexico

pfeather@cs.unm.edu,maccabe@cs.unm.edu

Abstract

In this paper, we presentand validatea new modelde-
signedto capture thebenefitsof protocoloffloadin thecon-
text of high performancecomputingsystems.Othermodels
capture thebenefitsof offloador theperformanceof paral-
lel applications.However, theextensiblemessage-oriented
offloadmodel(EMO)is thefirstmodelto emphasizetheper-
formanceof the networkprotocol itself and modelsit in a
message-orientedrather thanflow-orientedmanner. EMO
allowsusto considerbenefitsassociatedwith thereduction
in message latencyalong with benefitsassociatedwith re-
ductionin overheadandimprovementsto throughput.

In order to validate EMO, we usethe tool to modela
very commonoffload technique, interrupt coalescing. We
discusstheassumptionsof our modelandshowthemodeled
offloadandlatencyperformanceof interruptcoalescingand
nointerruptcoalescing. Wethenpresentpreliminaryresults
to validatethatour modelis accurate.

1 Intr oduction

Network speedsare increasing. Both Ethernetand In-
finibandarecurrentlypromising40 Gb/sperformance,and
Gigabit performanceis now commonplace.Offloadingall
or portionsof communicationprotocolprocessingto anin-
telligent NIC (Network InterfaceCard) is frequentlyused
to ensurethat benefitsof thesetechnologiesare available
to applications.However, determiningwhat portionsof a
protocol to offload is still more of an art than a science.
Furthermore,therearefew tools to helpprotocoldesigners
chooseappropriatefunctionalityto offload.

Currently, thereareno modelsthat addressthe specific
concernsof high-performancecomputing. We createa
modelthatexploresoffloadingof commodityprotocolsfor

�
LosAlamosComputerScienceInstituteSCR71700H-29200001

individual messageswhich allows us to consideroffload-
ing performancefor message-orientedapplicationsandli-
brarieslikeMPI.

In this paper, we first briefly outlineour new model,the
extensiblemessage-orientedoffloadmodel(EMO), thatal-
lows us to evaluateand comparethe performanceof net-
work protocolsin a message-orientedoffloadedenviron-
ment. [2] providesanin-depthintroductionto EMO, along
with a comparisonof this model to other popularperfor-
mancemodels,LAWS [4] andLogP [1] anda casestudy
for usingthemodelto developnew offloadednetwork pro-
tocols.Second,weuseEMO to modelthelatency andover-
headof messagesusingno interruptcoalescing,usingde-
fault interrupt coalescingand using maximumdefault in-
terruptcoalescing.Third, we discussthe methodsusedto
measuretheactuallatency andoverheadof variousaspects
of a protocol. Finally, we presentour preliminary results
in validatingthemodelby comparingmodeledlatenciesfor
interruptcoalescingwith actualresults.

2 ExtensibleMessage-Oriented
Offload Model

We createda performancemodel that is not specificto
any oneprotocol,but ourchoiceswereinformedby ourun-
derstandingof MPI overTCPover IP.

Figure1 shows thecommunicationarchitectureusedfor
EMO. The latency andoverheadthat is necessaryto com-
municatebetweencomponentsmustincludethemovement
of datawhenappropriate.

Thevariablesfor this modelareasfollows:

� CN � # cyclesof protocolprocessingonNIC

� RN � Rateof CPUon NIC

� LNH � Time to move dataand control from NIC to
HostOS

1

Host OS

Protocol overhead = C_h

Protocol overhead = C_a

Protocol overhead = C_n

Latency = L_ha

Overhead = O_ha

Application

Latency = L_na

Overhead = O_na

Overhead = O_nh

Latency = L_nh

CPU rate = R_h

CPU rate = R_n

NIC

Latency = L_w

Figure 1. The Extensib le Message-oriented
Offload Model

� CH � # cyclesof protocolprocessingon Host

� RH � Rateof CPUon Host

� LHA � Time to move dataand control from Host to
App

� LNA � Timeto movedataandcontrolfrom NIC to App

� CA � # cyclesof protocolprocessingat Application

� ONH � # host cycles to move dataandcontrol from
NIC to HostOS

� OHA � # host cycles to move dataand control from
HostOSto App

� ONA � # host cycles necessaryto communicateand
movedatafrom NIC to Application

2.0.1 Extensibility

The model allows for extensibility with respectto pro-
tocol layers. We hope this model can be useful for re-
searchersworking on offloading partsof the MPI library
(like MPI MATCH) or partsof the matchingmechanisms
for any languageor API. We constructedthemodelsothat
it cangrow throughlevelsof protocols.For example,Our
modelcanby extended,or telescoped,to includeoffloading
portionsof MPI. We simply addCm, Lam and Oam to the
equationsfor overheadandlatency.

2.0.2 Overhead

EMO allowsusto explorethefundamentalcostof any pro-
tocol implementation,its overhead.Overheadoccursat the
per-messageand per-byte level. Our model allows us to
estimateandgraphicallyrepresentour understandingabout
overheadfor variouslevelsof protocoloffload.

Overheadis modeledas

Overhead� ONH
�

CH
�

OHA
�

CA
�

ONA

. However, all methodswill only usesomeof thecommu-
nicationpatternsto processtheprotocol. Traditionalover-
head,for example,will notusethecommunicationpathbe-
tweenthe NIC andtheapplicationanddoesno processing
at theapplication.

TraditionalOverhead� ONH
�

CH
�

OHA

2.0.3 Gap

Gap is the interarrival time of messagesto an application
onareceiveandtheinterdeparturetimeof messagefrom an
applicationonasend.It is ameasureof how well-pipelined
thenetwork protocolstackis. But gapis alsoa measureof
how well-balancedthe systemis. If the hostprocessoris
processingpacketsfor a receive very quickly, but the NIC
cannotkeepup, the hostprocessorwill starve andthe gap
will increase.If thehostprocessoris notableprocesspack-
etsquickly enoughonareceive,theNIC will starveandthe
gapwill increase.If thenetwork is slow, boththeNIC and
hostwill starve. Gapis ameasureof how well-balancedthe
systemis. As we minimizegap,we balancethesystem.

Gap � max� CN

RN �
CH

RH � LW �
� min� CN

RN �
CH

RH � LW �

2.0.4 Latency

Latency is modeledas

Latency � CN

RN

�
LNH

� CH

RH

�
LHA

�
LNA

� CA

RH

�
LW

. However, all methodswill only usesomeof thecommuni-
cationpatternsto processtheprotocol.Traditionalnetwork
protocols,for example,will notusethecommunicationpath
betweentheNIC andtheapplicationanddoesnoprocessing
at theapplication.

TraditionalLatency � CN

RN

�
LNH

� CH

RH

�
LHA

2

3 Interrupt CoalescingusingEMO

Thereareseveraloptionsfor reducinginterruptpressures
dueto communication.Most conservatively, onecancoa-
lesceinterrupts. The useof algorithmsto reduce(or coa-
lesce)thenumberof interruptshasbeenwidespread.In this
approach,thereceiving NIC only interruptsthehostaftera
specifiedamountof timeor numberof arriving packets.We
model the latency andoverheadof a messagewhen there
is nointerruptcoalescingoccurring,whenanidealinterrupt
coalescingpatternis occurringandwhenthespecifiednum-
berof packetsto wait beforeaninterruptis veryhigh.

3.1 Overhead

Figure2 graphicallyrepresentsthe protocolprocessing
overheadfor traditionalUDP usingno interruptcoalescing
andfor UDP usingmaximuminterruptcoalescing.

C_h + O_ha

O_nh

C_h

O_na

O
ve

rh
ea

d
in

 c
yc

le
s

Size of message

Standard UDP
O_nh + C_h + O_ha

Interrupt coalescing

Figure 2. Extensib le Message-Oriented Of-
fload - overhead

Recallthattraditionaloverheadis modeledas

TraditionalOverhead� ONH
�

CH
�

OHA

Interruptcoalescingamortizesthecostof theONH over
many messages.In orderto modeladvantagesof interrupt
coalescingin EMO, theoverheadis measuredin thelimit as
ONH approacheszero.

Interrupt coalescingOverhead� CH
�

OHA

Interruptcoalescingstill requiresthe copy betweenthe
operatingsystemandtheapplicationandsooverheadis still
linearin thesizeof themessage.

3.2 Latency

Figure3 graphicallyrepresentsthelatency of traditional
UDP, andprovidesa rangeof latenciesfor UDP messages
with interruptcoalescing.

(worst case)

Size of message

C_n/R_n

L_ha

C_h/R_h

La
te

nc
y

L_nh

L_nh’

(best case)
Interrupt Coalescing
Standard UDP

Interrupt Coalescing

Figure 3. Extensib le Message-Oriented Of-
fload - Latenc y

InterruptCoalescingdecreasesthe overheadby waiting
to interrupt the operatingsystemuntil a numberof mes-
sageshave arrived for processing. While this decreases
theamountof protocolprocessingoverhead,it actuallyin-
creaseslatency. Figure 3 graphically representsthe best
caselatency for theinterruptcoalescingmethodasthesame
as the latency of a messageprocessedusing a traditional
UDP stack.Anotherlatency for interruptcoalescingis also
represented.Here, the slopeof the line remainsthe same
but theexactoffsetfrom thetraditionallatency will depend
on the amountof time the interruptcoalescingmechanism
waitsbeforeinterruptingthehost.Thus,Lnh will dependon
theimplementationof theinterruptcoalescingmechanism.

4 Model Verification - Initial Results

We measuredlatenciesby creatinga ping-pongtestbe-
tweenHostA andHostB. HostA remainsconstantthrough-
out the measurements.Host A is a 933 MHz PentiumIII
runninganunmodifiedLinux 2.4.25kernelwith theAcenic
GigabitEthernetcardsetto default valuesfor interruptco-
alescingandtransmitratios. Host B is the samemachine
connectedto HostA by cross-over fiber. HostB alsoruns
anunmodifiedversionof theLinux 2.4.25kernel.

Wemeasuredoverheadby modifyingourping-pongtest.
HostA continuestheping-pongtest,but HostB includesa
cycle-soaker that countsthe numberof cycles that canbe
completedwhile communicationis in progress.

3

4.1 Latency

In orderto validatethe modelfor latency, we measured
actuallatency andapproximatedmeasurementsfor thevar-
iouspartsof thesumfor ourequation:

TraditionalLatency � CN

RN

�
LNH

� CH

RH

�
LHA

Our model is verified to the extent that the sumof the
addendsapproximatestheactualmeasuredlatency.

4.1.1 Application to Application Latency

In order to measurethe traditional latency, we ran a sim-
ple UDP echoserver in userspaceon HostB. HostA sim-
ply measuresping-ponglatency for varioussizemessages.
We measuredthis latency from 100bytemessagesthrough
8900byte messages.We remainwithin the jumbo frame
size to avoid fragmentationand reassemblyor multiple
packets,but exercisethecrossingof pageboundaries.The
pagesizefor theLinux 2.4.25kernelis 4KB.

We configured two 933 MHz, Linux 2.4.0(release)
serverswith version0.49 of JesSorenson’s Acenic driver
(patchedonly to supporttracedumps).Themachineswere
connectedby across-overfibercable(with no switch).

The Acenic driver has four configurableparameters,
the receive-side interrupt threshold, the send-sideinter-
rupt threshold,the receive-sidemaximuminterrupt inter-
arrival time and the send-sidemaximum interrupt inter-
arrival time. The default parameterswereusedfor the de-
fault interrupts.To disableinterruptcoalescing,thereceive-
sideinterrupt thresholdandthe send-sideinterrupt thresh-
old wereset to 0 and the maximuminterrupt inter-arrival
timesweresetto 0. For maximuminterrupts,the receive-
sideandsender-side interrupt thresholdswereset to 1000
and the maximuminterrupt inter-arrival timeswereset to
100µs.

4.1.2 Application to NIC Latency

In order to measureapplicationto NIC latency we moved
theUDP echoserver into theAcenicfirmware.This allows
usto measurethelatency of a messageasit travelsthrough
HostA, acrossthewire, andto theNIC on HostB. This la-
tency shouldnot reflectthecostof theinterrupton HostB,
thecostof moving throughthekernelreceiveor sendpaths
on HostB, nor thecostof thecopy of datainto userspace
on Host B. The UDP echoserver exercisesall of the code
in thetraditionalUDP receiveandsendpathsin theAcenic
firmwarewith the exceptionof the DMA to the host. Be-
causeof the structureof the Acenic firmware, we had to
includea bcopy (bytecopy) of theentiremessagefrom the
receive buffer to a transmitbuffer. This copy is performed

at thespeedof theAcenicprocessor(88MHz). We assume
that the applicationto NIC latency measurementincludes
both the copy of entiremessageandthe CN

RN
portion of the

latency calculation. It is importantto notethat the startup
time for the DMA engineon the Acenic cardsis approxi-
mately5mus. Thiswill beaccountedfor in theLNH portion
of thecalculation.

4.1.3 Application to Kernel Latency

For our initial results,we choseto measurethe latency be-
tweenan applicationon Host A andthe kernelon Host B
usingthe UDP echoserver utility alreadyprovidedby the
inetddaemon.Thisshouldgiveareasonableapproximation
of thelatency betweentheapplicationandthekernel.While
theUDP echomessagedoesnot travel theexactcodepath
asaUDPmessagein thekernel,it doesexercisethesameIP
pathandvery similar codeat the level above IP. The UDP
echoserver doesnot performa copy of datato userspace
anddoesnot performa routelookup.

Theapplicationto kernellatency wasmeasuredwith an
unmodifiedHost A with default interrupt coalescingand
with HostB with default interruptcoalescing,no interrupt
coalescing,andmaximuminterruptcoalescing.We expect
thatthedifferencesbetweeninterruptcoalescingandno in-
terruptcoalescingshouldbepresentat this level.

4.1.4 Results

We validateEMO in two ways. First, we show that theas-
sumptionswe have madeaboutthevariablesin our latency
equationareaccurate.Second,wevalidatethatourcompar-
isonof interruptcoalescingschemesis accurate.

Figure 4 representsour verification that the overall la-
tency is reflectedin thevariablesof its equationandshows
theminimumlatency of variouspartsof theprotocolusing
default interruptson both Host A andHost B. The ToNIC
latency includesthe bcopy of datafrom the receive buffer
on theAcenic to thetransmitbuffer. TheprojectedToNIC
latency is calculatedby determiningthe approximateusec
requiredto performthebcopy andsubtractingthatfrom the
actuallatency. We assumedthe numberof cyclesneeded
perbyteto performthecopy was4.

The latency representedin the resultscan be modeled
throughEMO as:

X
� CN

RN

�
LNH

� CH

RH

�
LHA

whereX is the latency of the messageas it travels the
protocol stackduring sendand receive on Host A andas
it travels the wire. The projectedToNIC latency includes
both the processingon the NIC, CN

RN
, andthe time on Host

A and the wire, X. The differencebetweenthe projected
ToNIC latency andthetheToKernellatency is LNH andCH

RH

4

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

M
in

 la
te

nc
y

in
 u

se
c

	

Size of message (bytes)

To NIC
To App

To Kernel
Projected To NIC

Figure 4. Latenc y with Default Coalescing

and the differencebetweenthe ToKernel latency and the
ToApp latency is LHA. As we expected,the slopeof the
projectedToNICandToKernelarethesamesinceweexpect
the interrupt latency to be constant.Also aswe expected,
theslopeof theToApp latency increasesmorequickly asit
is dependanton themessagesizeduringthecrossingof the
wire X which is reflectedin theToKernelslopeandon the
copy from kernel to userspaceLHA. The model,and the
assumptionswe madeaboutthe variables,areverified by
theresults.

Figure5 representsour verificationthat thecomparison
of offloadschemesusingEMO is accurate.Theexpectation
is that the averagelatency will be generallysmallerwhen
thereis nointerruptcoalescing.Thisis shown in ourmodel.
Interruptcoalescingcanbeseenasa move to decreasethe
overheadeffect of the interruptONH at thecostof thetime
thataninterruptwill reachthehost. This meanswe expect
thatLNH is thevariableaffected.Figure5 showsthatgener-
ally latency is slightly lowerwhenHostB disablesinterrupt
coalescingandthelatency for messagesis higherwhenthe
maximuminterruptcoalescingis enabled.

Moreover, Figure6 further isolatesthis phenomenonby
measuringthe ping-pong measurementwithout the final
movefrom kernelto applicationspace.If welet X bethela-
tency of all communicationonHostA, thewire andtheNIC
onHostB, thenFigure6 representsacomparisonbetween:

X
�

LNH
� CH

RH

andtheinterruptcoalescinglatency

X
�

L
NH
� CH

RH

 0

 100

 200

 300

 400

 500

 600

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
vg

 la
te

nc
y

in
 u

se
c

	

Size of message (bytes)

Maximum Coalescing
Default Coalescing

No Coalescing

Figure 5. Application to Application Latenc y

 0

 100

 200

 300

 400

 500

 600

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
vg

 la
te

nc
y

in
 u

se
c

	

Size of message (bytes)

Maximum Coalescing
Default Coalescing

No Coalescing

Figure 6. Application to Kernel Latenc y

4.2 Overhead

In order to validate the model for overhead,we mea-
suredactualoverheadandapproximatedmeasurementsfor
thevariouspartsof thesumfor our equation:

TraditionalOverhead� ONH
�

CH
�

OHA

Our model is verified to the extent that the sumof the
addendsapproximatestheactualmeasuredoverhead.

4.2.1 Application to Application Overhead

We measuredthe amountof cycle-soakwork Host B can
do without any communicationoccurring. Thenwe mea-
suredthe amountof cycle-soakwork Host B cando with
standardping-pongcommunicationof varioussizedmes-
sagesoccurringbetweenan applicationon Host A and a
UDPechoserveronHostB. Thedifferencebetweentheseto
amountsof work is the overheadassociatedwith the com-

5

munication.It is thethenumberof cyclesbeingtakenaway
from calculation.

We measuredtheoverheadof applicationto application
communicationwith default interruptson HostA andwith
defaultinterruptsonHostB, nointerruptcoalescingonHost
B, andmaximuminterruptcoalescingonHostB. Weexpect
thattheoverheadof applicationto applicationcommunica-
tion whenHostB is usinginterruptcoalescingwill belower
thanwhenHostB is not usinginterruptcoalescing.

4.2.2 Kernel to Application Overhead

In orderto measurethe overheadfor kernel to application
communication,HostA ranapingfloodonHostB andHost
B ran the cycle-soakwork calculation. We expectthat in-
terruptcoalescingwill still makeadifferenceat this level of
communicationsothatHostB with no interruptcoalescing
will have higheroverheadthanHost B with default inter-
rupt coalescing.However, we do not expectthesizeof the
messageto make asmuchof a differencein thecommuni-
cationoverheadat this level asit doesat theapplicationto
applicationcommunicationlevel.

4.2.3 NIC to Application Overhead

In order to measurethe overheadfor applicationto NIC
communication,Host B is run with the modified Acenic
firmwarewith theUDPechoserverat theNIC level. HostA
runstheUDPping-pongtestandHostB runsthecycle-soak
work calculation.We expectquitelow overheadon HostB
asthereis nohostinvolvementwith thecommunicationand
thereforeno communicationoverhead.

4.2.4 Results

As expected,therewasno communicationoverheadwhen
theUDPechoserverrunsat theNIC level. Thisverifiedour
modeledexpectations.We expectedthat the overheadfor
communictionwould be lower whenHost B employed in-
terruptcoalescing.Figure7showsthatthedifferenceisneg-
ligible at best,but this reflectsgeneralresultsregardingin-
terruptcoalescingandits efficacy in loweringoverhead[3].
Moreover,Figure7 showsthatthiseffectoccursatthekernel
to applicationcommunicationpathasexpectedsincethein-
terruptis still presentin thispath.As thesizeof themessage
approaches9000bytes,thenumberof interruptsdecreases
andsotheoverallcommunicationprocessingoverheadalso
decreases.This is true for all schemesbut the maximum
interruptcoalescingschemewhich utilizes large delaysin
processinginterruptsto flattenout theoverheadcurve.

Figure8 shows thegapthatrepresentsOHA increasesas
thesizeof themessageincreasesasexpected.This verifies
the assumptionsin our EMO model. However, the overall
overheadfor applicationto applicationmessagesremains

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
vg

 o
ve

rh
ea

d
in

 c
yc

le
s

�

Size of message

Default Interrupts
No Interrupts

Figure 7. Kernel to Application Overheads

constant.Weexpectthatasmessagesbecomelarger, thein-
creasecostof overheadassociatedwith thecopy of datato
the application(OHA) is just offsetby the decreasecostof
overheadassociatedwith fewer interrupts(ONH). Measure-
mentsfor muchlarger messagesshouldreveal application
to applicationoverheadsthatbegin to slopeupwith thesize
of themessage,especiallysincethesavingsin interruptsin
maximizedat 9000bytes.Theseresultsshouldalsobring a
moreclearunderstandingof theroleof thememorysubsys-
temin EMO.

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
vg

 o
ve

rh
ea

d
in

 c
yc

le
s

�

Size of message

Actual
ToKernel

Figure 8. Overhead with Default Interrupt Co-
alescing

5 Conclusionsand Future Work

The extensiblemessage-orientedoffload model (EMO)
allows us to explore the spaceof network protocol imple-
mentationfrom theapplicationmessaginglayersthroughto
the NIC on a messageby messagebasis. This new model

6

givesus a freshunderstandingof the role of offloadingin
terms of overhead,latency and gap in high-performance
systems.

Thepreliminarywork beginsto validatetheEMO model
and its assumptions.Generally, both the latency and the
overheadequationsare verified by actual measurements.
Also, the comparisonbetweenvarious interrupt coalesc-
ing schemesfurtherverifiesEMO.Futurework will include
verificationthroughgapmeasurementsandoverheadmea-
surementsfor largemessages.

EMO asa modelfor exploring offloaddesignis already
beingused.We planon usingEMO to boundtheresource
requirementsfor NICs or TCP offload enginesat 10Gb/s
and40Gb/sspeeds.Weplanalsoto extendEMO to include
memorymanagementconsiderationssuchascaching.

References

[1] D. E. Culler, R. M. Karp, D. A. Patterson,A. Sahay, K. E.
Schauser, E. Santos,R. Subramonian,and T. von Eicken.
LogP:Towardsa realisticmodelof parallelcomputation.In
Principles Practice of Parallel Programming, pages1–12,
1993.

[2] P. GilfeatherandA. Maccabe.Modelingprotocoloffloadfor
message-orientedcommunication. In Proceedingsof IEEE
Cluster2005, Boston,MA, September2005.

[3] P. GilfeatherandT. Underwood.Fragmentationandhighper-
formanceip. In Proc. of the15th InternationalParallel and
DistributedProcessingSymposium, April 2001.

[4] P. ShivamandJ.Chase.Ontheelusivebenefitsof protocolof-
fload.In SIGCOMMworkshoponNetwork-I/OConvergence:
Experience, Lessons,Implications(NICELI), August2003.

7

	Home
	TOC
	Go Back

