Cluster Security with NVisionCC: The Forseti Distributed File
Integrity Checker

Adam J. Lee, Gregory A. Koenig™, and William Yurcik'
"National Center for Supercomputing Applications
tDepartment of Computer Science
University of Illinois at Urbana-Champaign
{adamlee, koenig, byurcik}@ncsa.uiuc.edu

Abstract

Attackers who are able to compromise a single node
i a high performance computing cluster can use that
node as a launch point for a number of malicious ac-
tions. In many cases, the password used to log into
a single node can be used to access a large number of
nodes in the system, allowing the attacker to utilize the
vast computing and storage capabilities of the compro-
mised cluster to sniff network traffic, carry out brute-
force password cracking, launch distributed denial of
service attacks, or serve illegal digital content. Often,
these types of attackers modify important system files
to collect passwords to other accounts, disable certain
logging facilities, or create back-doors into the system.

In this paper, we present Forseti, a distributed file
integrity checker designed specifically for the high per-
formance computing cluster environment. Forseti was
designed to address the shortcomings exhibited by ex-
isting host-based intrusion detection systems when used
in the cluster environment and to provide a means of
detecting changes to critical system files made by root-
level adversaries. We discuss the design and implemen-
tation of the Forseti system, present a security analysis
of Forseti, examine the performance of the system, and
explore how Forseti can be used in concert with other
security monitoring techniques to enhance the security
of the HPC' cluster environment.

1 Introduction

Over the course of the last two years, the security
of large-scale commodity clusters has become a topic
of increasing research and practical interest. Attack-
ers who are able to compromise a single node in one
of these clusters can use that node as a launch point

for a number of malicious actions. In many cases, the
password used to log into a single node can be used
to access a large number of nodes in the system, al-
lowing the attacker to utilize the vast computing and
storage capabilities of the compromised cluster to carry
out brute-force password cracking, launch distributed
denial of service attacks, or serve illegal digital content.
Additionally, an attacker can listen to network traffic
for other users to log into their compromised nodes in
hopes of learning passwords for other accounts on these
systems.

The recent rise in popularity of grid computing has
exacerbated this problem by increasing the amount
of damage that can be caused with a single compro-
mised account. Often times, a password used to log
into one cluster node can be used not only to log into
other nodes in the same cluster, but also to log into
other clusters located throughout the computational
grid. This implies that the compromise of a single ac-
count on a single cluster node could give an attacker the
ability to access many thousands of geographically dis-
tributed cluster nodes. The high utilization of clusters
participating in grid computing systems allows an at-
tacker sniffing for passwords on a compromised node to
gain access to an extremely high number of other user
accounts. This technique is not conjecture and was,
in fact, used during the TeraGrid compromises that af-
fected a large number of clusters world-wide during the
Spring of 2004 [11]. During this time period, attackers
installed Trojan-horse sshd processes designed to cap-
ture the passwords of users logging into compromised
nodes so that these passwords could then be used to
compromise other nodes throughout the grid.

Host-based file integrity checkers (e.g., [2, 4, 6, 10,
12, 15, 18, 24]) have been used to help detect these
types of attacks on hosts in enterprise computing sys-
tems for a number of years. These tools are activated

periodically (usually by means of a scheduler such as
cron), to check various properties of critical system
files, including access permissions, timestamps, and
content hashes. These properties are compared to ref-
erence values stored in a read-only database; files whose
values differ from the reference cause an alert to be
raised, such as an entry in the system log or an email
being sent to the system administrator. Though these
systems have worked well in enterprise computing, they
suffer several shortcomings when used in large-scale
commodity clusters. Installing and managing these
tools on the hundreds or thousands of nodes in a large
cluster is a time-consuming process involving changes
to each node when system software is upgraded. Ad-
ditionally, if the signature database is stored on each
node, attackers can relatively easily change the the ref-
erence copy of the file information. Lastly, effectively
logging the access violations can pose a problem if an
attacker has gained root access to the machine, as they
could disrupt the logging mechanism and easily cover
their tracks.

To address the shortcomings of host-based file in-
tegrity checkers while retaining their strengths, we have
designed Forseti, a distributed file integrity checker
that meets the unique needs of the HPC cluster en-
vironment. In our tool, the file integrity database is
separated from the nodes to be monitored and by lever-
aging the emergent properties of the HPC cluster com-
puting environment [25], we can significantly reduce
the size of this database. Cluster nodes cannot access
the database, meaning that an attacker who has com-
promised some number of nodes in the system cannot
alter the stored file signatures. Our system relies on a
collector node (not necessarily part of the cluster) to
carry out the integrity scans by making remote connec-
tions to the nodes in the system, pushing the necessary
software to the system, and carrying out the scan. In
this way, Forseti has no software footprint on the nodes
to be monitored and adding a new node to be scanned
is as simple as updating the database to inform the
collector node of this change. This system is robust
to individual node compromises and, though not fool-
proof, is significantly harder to defeat than other host-
based systems performing similar function; had Forseti
been deployed during the Spring of 2004, the TeraGrid
attacks could have been detected and stopped much
earlier than they were.

The rest of this paper is organized as follows. In
Section 2 we describe our threat model and discuss the
conditions in which integrity monitoring can aid in the
security monitoring of large-scale commodity clusters.
Section 3 briefly discusses the design of NVisionCC,
the cluster monitoring tool with which Forseti inter-

acts. In Section 4, we discuss the implementation of
our distributed integrity checker and detail its inter-
actions with cluster nodes and NVisionCC. We revisit
our threat model and discuss the performance of this
scanner in Section 5, and address related work in Sec-
tion 6. We then present our conclusions and directions
for future work in Section 7.

2 Threat Model

Throughout this paper, we focus on the use of file
integrity checking as a single tool at the disposal of sys-
tem administrators tasked with monitoring the security
state of large-scale commodity clusters. As such, we do
not advocate the use of Forseti to detect all forms of
cluster intrusion, but rather to locate only a particu-
lar class of attacks. Any anomalies detected through
the use of file integrity checking are meant to be cross-
referenced and correlated with the findings of other se-
curity monitoring techniques—a task which our com-
prehensive cluster monitoring tool, NVisionCC, is de-
signed to carry out (e.g., by examining running system
processes [13], open network ports [14], or detecting
privilege escalations [20]).

File integrity checking allows system administrators
to be notified when the contents or permissions of key
system files is changed. Many times, attackers who
compromise nodes in a cluster do so with the intent
of carrying out password gathering attacks to escalate
their privilege set and gain access to other nodes or
clusters. These attacks are usually carried out through
the use of rootkits or Trojan-horse system utilities. The
tool presented in this paper focuses on attacks executed
by a root-level adversary that involve the modification
of system files. In particular, we assume our adversary
has the ability to insert, reorder, and replay messages
sent on the network, arbitrarily modify files stored on
the compromised nodes, and perform any number of
administrative tasks (e.g., starting and stopping sys-
tem services) on the nodes which have been compro-
mised. Throughout this paper, we assume that any
individual node in the cluster can be compromised and
used to carry out arbitrary tasks on behalf of an at-
tacker. We relax this assumption and discuss the use
of Forseti in single-image clusters (e.g., Clustermatic
systems) in Section 5.4.

3 Design

In this section, we comment briefly on the emergent
properties of large-scale commodity clusters and de-
scribe the ways in which these properties can be used

Information Collection

Host

security Collector

Parameters

Security
Analysis

Web Server

Figure 1. NVisionCC system architecture

during security monitoring. We then discuss the ar-
chitecture of NVisionCC, a cluster security monitoring
system designed to leverage these emergent properties.
Lastly, we overview the architecture of the Forseti dis-
tributed file integrity checker and discuss how it fits
into the NVisionCC monitoring framework.

3.1 Emergent Properties

Emergent properties are characteristics of a system
that are only visible when the system is viewed as a
whole, rather than as simply the sum of its parts. In
large-scale commodity clusters, many individual nodes
are collected together to form a single logical comput-
ing environment. When this larger computing envi-
ronment is examined as a whole, a number of useful
properties can be observed; the tool presented in this
paper leverages one such observation.

The predominant emergent property present in
large-scale commodity clusters is the ability to parti-
tion the hundreds or thousands of individual nodes into
a small number of equivalence classes. Nodes within
the same equivalence class are configured similarly and
exhibit like behaviors. For instance, nodes within the
same equivalence class are typically built from the same
system images and will thus be configured to run the
same sets of system services, contain the same system
binaries, and exhibit similar communication patterns
with other nodes in the system. A list of commonly
observed equivalence classes is provided in Table 1.

In a previous work [25], we showed that emergent

properties can be leveraged to increase security situ-
ational awareness in the cluster environment. Rather
than being concerned with managing thousands of pos-
sible node configurations, as in an enterprise comput-
ing environment, the emergent structure of large-scale
commodity clusters allows us to focus only on whether
the configuration and behavior of a particular node is
consistent with other nodes in its equivalence class (or
classes). We next describe how our cluster monitor-
ing tool, NVisionCC, leverages the emergent structure
of the cluster environment to provide a framework for
effective security monitoring.

3.2 NVisionCC

NVisionCC is an extension to the Clumon [9] cluster
monitoring package which has been enhanced to moni-
tor the security-state of large-scale commodity clusters
by leveraging their emergent properties [26]. As shown
in Figure 1, the NVisionCC architecture consists of
four distinct parts: collection nodes, security analyz-
ers, a database, and a web server. Security monitoring
within the NVisionCC framework takes place in three
phases: information collection, security analysis, and
visualization.

During the information collection phase, the NVi-
sionCC plug-ins installed on each collector node gather
information from the nodes in the cluster through the
use of either push or pull mechanisms. Once collected,
this information is logged to the NVisionCC database
where it can be accessed by other components in the

’ Equivalence Class

Description

Head

Head nodes provide an in-
terface for end users to ac-

/usr/bin/write

/usr/bin/write 59£d38d0. ..
/u .
[/usr/bin/vdir a8b7d3e3...

/us
/ust/bin/vdir
> | /usc/sbin/eraceronts
/usz/bin/top

59fd38d0...

1cl£3613...

S

3£653255...

a. ..

cess the cluster

Nodes in this class carry out
computations on behalf of
scheduled jobs

Storage nodes provide and
interface to the cluster’s
storage subsystems

These nodes host the cluster
management software
Nodes in this class may host
cluster performance moni-
toring software

Compute

Storage

Management

Monitor

Table 1. Common node equivalence classes

system. In addition to containing the observations
gathered during the information collection phase, the
NVisionCC database is also used to store expected-
value profiles for each of the data items gathered by its
plug-ins. Due to the emergent structure of the cluster
environment, these profiles can usually be stored on
a per-equivalence-class basis, rather than a per-node
basis, thereby greatly reducing the effort required to
manage the cluster node profiles.

During security analysis, one or more security ana-
lyzer nodes parse the information stored in the NVi-
sionCC database to search for unusual patterns. The
information returned by the collector nodes is cross-
referenced with the appropriate equivalence-class pro-
files stored in the database and any deviations from the
expected are logged to an alerts table in the database.
Though the information collection and security analy-
sis phases of NVisionCC’s operation are logically two
separate processes, it is sometimes the case that a par-
ticular plug-in executes these two logical processes us-
ing a single system process.

The alerts table in the database contains various
data about the possible security violations detected by
the NVisionCC plug-ins, including the time of the ob-
servation, the type of discrepancy detected, and the
severity of the deviation. The NVisionCC front-end is
a PHP-enabled web-page that allows the current sta-
tus of the cluster, including all current alerts, to be
visualized on a single screen. Security administrators
can access this interface from their workstations to as-
sess the security-state of their cluster and take reactive
measures to the security alerts that are raised by NVi-
sionCC.

/usr/sbin/tcpdump 8deeed3s. ..
/bin/tar b6laceSd. ..
/sbin/syslogd be27adsb. ..
/usr/sbin/sshd ce342233...

(1) Obtain signatures

NVisionCC
Database

El_

Cluster
Nodes

(3) Log errors and
update last scan times

(2) Scan cluster
node-at-a-time

Figure 2. Forseti architecture diagram

3.3 Forseti

We now highlight how the Forseti distributed file
integrity checker fits into the NVisionCC monitoring
paradigm. Figure 2 shows an overview of the Forseti
architecture. Essentially, the components of the system
can be broken up into three groups: the monitor node
(or nodes), the NVisionCC database, and the cluster
itself. In addition to containing the configuration in-
formation for NVisionCC, the NVisionCC database is
also augmented to contain configuration information
needed by Forseti, including node last scan times and
stored signatures for the files being monitored.

By utilizing the information stored in the NVi-
sionCC database, the “monitor node” shown in Fig-
ure 2 actually embodies the functionality of both the
“collector node” and “security analyzer” shown in Fig-
ure 1. This node retrieves equivalence class profiles
from the database, carries out a connection-oriented
scan of each node in the cluster and reports any devia-
tions from the stored profile to the error_log table in
the NVisionCC database. Detailing and analyzing this
scan process in depth is the focus of the remainder of
this paper.

4 Implementation

In this section, we discuss the design of Forseti,
our distributed file integrity checker. In particular, we
overview the setup and configuration of Forseti and
discuss the monitoring process in full detail.

Field \ Format \ Description

host_type | char(60) | The equivalence class of hosts that this row applies to. This is a foreign key
linking to the host_types table in the NVisionCC database.
filename | char(255) | The name of a file that should be monitored by the integrity checker.
sigl char(128) | The signature of the file filename computed using hash algorithm 1.
sigN char(128) | The signature of the file filename computed using hash algorithm N.
Table 2. The file_sigs table
4.1 Setup alence class and copies over the specified hash compu-

Prior to configuring NVisionCC to make use
of Forseti, the NVisionCC database must be aug-
mented to support the integrity checker. The first
step of this process entails creating the file_sigs
and forseti_last_scan database tables required by
Forseti. The file_sigs table is used to hold the base-
line file signature information for nodes in the cluster.
The format of the this table is described in Table 2.
The forseti_last_scan table is used by Forseti to
keep track of the date and time that each node in the
cluster was last successfully integrity checked. We dis-
cuss the importance of this table further in Section 5.2.

To facilitate the creation of the file_sigs table,
we have provided config.pl, a Perl script that is to
be run from the collector node during the installation
process. This script takes as parameters the paths to
any number of programs which can be used to com-
pute the hash value of the contents of a file. These pro-
grams must conform to the input argument format and
digest output format of the Gnu utilities md5sum and
shalsum. Given this list of hash programs, config.pl
creates an instance of the file_sigs table in the NVi-
sionCC database containing one sig column for each
hash program (e.g., if N hash programs are supplied as
arguments to config.pl the columns sigl, ..., sighN
are created). This allows multiple hash values to be
stored for each file being monitored; the importance of
storing multiple hash values will be discussed in detail
in Section 5.2. The config.pl script also generates
the other scripts needed by the distributed integrity
checker: update_sigs.pl and forseti.pl.

After the file_sigs table has been created by
config.pl, it must be populated with the names of the
files that are to be monitored and their corresponding
signatures. To this end, the update_sigs.pl script is
to be run once for each equivalence class of nodes in the
cluster. At the start of its execution, update_sigs.pl
is provided with the name of an equivalence class and
a list of files that should be monitored. The script then
connects to a representative node of the specified equiv-

tation binaries. At this point, each of the N signatures
that will be stored in the file_sigs table are generated
for each of the files that are to be monitored by Forseti.
The information gathered during this process is then
inserted into the file_sigs table and forms the basis
of comparison used each time that Forseti is invoked
by NVisionCC. For obvious reasons, it is imperative
that the entirety of this setup phase takes place with-
out interference; we fully address this requirement in
Section 5.1.

4.2 Monitoring

After the NVisionCC database has been updated to
support Forseti, the Forseti plug-in can be activated;
this process occurs at an interval which can be config-
ured from within NVisionCC. Once activated, Forseti
follows a very basic algorithm to check for modifica-
tions to the files whose signatures were imported to the
file_sigs table during the previously described setup
phase. This process is presented in detail in Figure 3.

Forseti takes a very methodical approach to checking
the integrity of files on the nodes of the cluster. The set
of nodes is first partitioned based on equivalence class
and then scanned one partition at a time (Figure 3,
lines 2—6). This allows us to minimize database trans-
actions and prevents the integrity scanner from slowing
down other NVisionCC plug-ins. Prior to scanning a
node, Forseti randomly chooses a hash algorithm and
copies a randomly-renamed binary implementing that
algorithm over to the cluster node using SCP (Figure 3,
lines 8-11). An SSH session is then opened to the node
which is used to execute the hash program on the files
that are to be monitored for that equivalence class and
gather the corresponding signatures (Figure 3, lines 12—
13).

In addition to performing the tasks associated with
the NVisionCC processing stage of data collection,
the forseti.pl script also performs the data analysis
stage by comparing the signatures returned during the
scan to their expected values and reporting any errors
to the NVisionCC database (Figure 3, lines 14-16). We

1: {# The forseti.pl script}

2: Let C be the set of node equivalence classes

3: for all c€ C do

4: Let N be the set of nodes of type c stored in
the NVisionCC database

5: Retrieve F., the list of files to be integrity
checked for equivalence class ¢, from the NVi-
sionCC database

6: Retrieve S., the signatures of the files in F,,
from the NVisionCC database
for alln € N do

Choose a hash algorithm, alg, at random

9: Choose a random string, str

10: Rename the binary implementing alg to str

11: SCP str to node n

12: Establish an SSH connection to n

13: Compute str(F.), the hash of each file in
F. using str

14: if any h € str(F,) differs from its corre-
sponding b’ € S, then

15: Log an alert to the NVisionCC database

16: end if

17: Update last_scans table for node n

18: end for

19: end for

Figure 3. Pseudocode describing the integrity
checking process

have found that in this case, it is more efficient to com-
bine the information gathering and signature mapping
as one step and thus take advantage of NVisionCC’s
flexibility to do so. After this process has been com-
pleted, the last_scan_time for the current node is up-
dated to reflect the current time (Figure 3, line 17).

It is important to note that the account used by
Forseti to log into the cluster nodes and carry out its
scans should be an unprivileged (i.e., non-root) ac-
count. Forseti requires only read access to the files
that it should monitor, thus it is highly recommended
that administrators create an extremely low-privilege
“forseti” user with which to carry out these scans.

5 Discussion

In this section, we discuss our implementation of
Forseti. In particular, we draw attention to how Forseti
address the threats identified in our threat model, dis-
cuss possible attacks against Forseti, comment its per-
formance, and summarize the benefits of the Forseti

distributed file integrity checker.
5.1 A Key Assumption

Prior to addressing the security of Forseti, we must
make one key assumption regarding the state of the
NVisionCC database.

Assumption. The NVisionCC database contains ac-
curate information. This implies that the database was
set up correctly and was not tampered with after instal-
lation.

For obvious reasons, it is imperative that the en-
tirety of the setup phase takes place using an un-
compromised collector node which builds its signature
profiles by contacting uncompromised representative
nodes. This is easily accomplished in practice. The col-
lector nodes used by NVisionCC should be configured
to refuse all incoming connections, effectively “hard-
ening” them against attack. In addition, rather than
profiling nodes that exist in the cluster, the image for
the equivalence class being profiled should be installed
on a fresh node which is disconnected from the rest of
the cluster (e.g., it could be connected to the collector
node via a separate management network). In this way,
a careful administrator can ensure that the file sigs
table contains correct values at the time that it is cre-
ated.

To protect the integrity of the NVisionCC database
after it is configured, it is important to ensure that
nodes in the cluster have no means of accessing the
NVisionCC database. This is easily accomplished by
disabling all access to the database server aside from
requests originating from known collector nodes and
the management consoles of system administrators. As
the collector nodes should be configured to block all
incoming access requests, it is highly likely that they
will remain uncompromised and will not corrupt the
NVisionCC database. For these reasons, we do not
feel that assuming an accurate NVisionCC database is
unreasonable.

5.2 Security Analysis

In the threat model presented in Section 2, we in-
dicated that we assume that our adversary has gained
root-level access to some number of nodes in the clus-
ter that Forseti is monitoring. In these types of at-
tacks, important system files are often modified; Sec-
tion 4 focused on how Forseti can be used to detect
such attacks. However, we cannot consider Forseti to
be a comprehensive solution until we have considered
scenarios in which the root-level adversary attacks the

Forseti system directly in an effort to cover his or her
tracks. We now address several such scenarios.

Configuration Attacks

One common class of attacks against file integrity mon-
itors involves altering the configuration of the integrity
scanning software itself. In general, these types of con-
figuration changes can take one of three forms: (1) al-
tering the signature database, (2) stopping the scanner
altogether so that failed integrity checks are never re-
ported, or (3) altering the reporting process which logs
integrity violations. We claim that Forseti is resistant
to each of these classes of configuration attack.

With respect to attack (1), we have made the as-
sumption in Section 5.1 that the cluster monitoring
network has been configured in such as way as to pre-
vent unauthorized entities from modifying the NVi-
sionCC database. Since the file integrity signatures
are stored in this database rather than on the nodes
themselves, Forseti is in fact resistant to this class of
attacks.

Forseti is resistant to attack classes (2) and (3) be-
cause these processes are not under the control of the
compromised host. The file integrity scans are initiated
by a remote collector node, not a local process such as
cron. In this way, a compromised cluster node cannot
alter the frequency with which integrity checks are ini-
tiated. In addition, the reporting process which inserts
alerts into the NVisionCC database runs on the col-
lector node and thus is not subject to tampering from
a compromised cluster node. As mentioned in Sec-
tion 5.1, the NVisionCC database should only be acces-
sible to collector nodes and the management consoles of
system administrators, Forseti is resistant against log
tampering by a compromised node. This is in sharp
contrast to other systems in which the reporting pro-
cess takes place locally on the node being monitored
and can thus be tampered with by the attacker.

Result Spoofing

In result spoofing attacks, attackers modify the file
hash binary to return a correct hash value despite the
fact that the file being integrity checked has been al-
tered. This is often accomplished by modifying the
hash binary so that it hashes files that the attacker has
not modified, but returns a cached result for files that
have been tampered with by the attacker. Other times,
hashes are redirected to unmodified “reference” copies
of modified files so that a hash computation actually
takes place, though an outdated file is hashed. Forseti
offers two lines of defense against this particular attack.

Algorithm \ Output length

MD5 [17] 128 bit
SHA-1 [1] 160 bit
SHA-256 256 bit
SHA-384 384 bit
SHA-512 512 bit
TIGER-192 [3] | 192 bit
RIPEMD-160 [7] | 160 bit

Table 3. Possible hash algorithms for use by
Forseti

The first line of defense against this attack addresses
the threat of a modified hash binary. To mitigate this
threat, Forseti generates a random filename for the
hash binary that is to be used during the integrity
checking process and then copies this binary to the
node being monitored at scan time. Copying a fresh
binary to the node being monitored decreases the risk
of the binary being modified before the integrity check
is run and the random filename increases the difficulty
that an attacker would have to carry out a execution-
path attack, in which an old binary could be run de-
spite the fact that a new binary was just copied. In
short, an attacker cannot easily attack a binary that
they cannot find.

The second defense against this attack is Forseti’s
support for multiple hash algorithms. Rather than us-
ing the supported hash algorithms in some preset or-
der, Forseti randomly chooses the hash algorithm to
be used to check the file integrity of a particular node
at runtime. This random choice implies that any at-
tacker who attempts to pass old scan results to the col-
lector node has a probability of success of 1/N where
N is the number of scan algorithms configured during
the installation process discussed in Section 4.1. Ta-
ble 3 lists a number of candidate algorithms for use by
Forseti. A secondary benefit of Forseti being agnos-
tic with respect to the hash algorithms used is that as
collisions and other insecurities are discovered in some
algorithms (e.g., [22, 21]), they are easily replaced.

Availability Attacks

Another way in which an attacker can prevent Forseti
from reporting changes to the files that it monitors is
by preventing the integrity checks initiated by the col-
lector node from completing successfully. For instance,
an easy way to accomplish this task is to prevent the
collector node from logging into the cluster nodes to
complete the requisite integrity checks. This can be
accomplished by disabling the account used to log into

the cluster nodes during the integrity checking process.

Forseti takes a conservative approach to solving this
problem. Recall from Figure 3 that Forseti keeps track
of the last time that each node was successfully in-
tegrity checked. It is trivial to write another NVi-
sionCC plug-in that checks the forseti_last_scans
table and raises an alert if a certain node has not been
successfully integrity checked for some period of time,
thereby alerting administrators to potential attacks on
the Forseti system. This, however, is at the cost of in-
creased attack false-positives in the event that a node
is down for maintenance. However, in many cases the
person monitoring the NVisionCC alert display will be
aware of the maintenance operation and can thus dis-
miss the alert. In the future, we plan to incorporate
this check of the forseti_last_scans table into Forseti
itself.

Intercepted System Calls

One serious attack against any file integrity checking
program can occur when the attacker has the ability to
modify the system call table in the operating system
kernel. If the attacker has this ability, he can inter-
cept calls to the hash binary executed by the Forseti
integrity checker and redirect these calls to unmodified
reference copies of the files to be integrity checked!.
This is very obviously a serious attack, as the user-
level process running the integrity check will have no
way of detecting that the results were falsified.

In general, a user-level process has very little means
of recourse when running on a compromised operating
system, as the trusted computing base can no longer
be trusted. As a result, this attack could be launched
against any file integrity checker, not just Forseti. One
line of defense that Forseti has against this attack is
the fact that the name of the binary that is executed
to carry out the integrity checking procedure varies at
each run, so the attacker must effectively guess which
calls made by Forseti are invoking hash programs and
which are executing other processes. In some cases
the attacker will want Forseti to access the modified
copies of programs (such as a modified shell), but other
times access should be redirected to the older reference
copies. As difficult as this may make attacking Forseti,
it does not solve the problem that an attacker who
can intercept and modify system calls can wreak havoc
with Forseti.

To address this problem, we propose two solutions
as future work. One area of research which our group

1Note that this attack is similar to the result spoofing attacks
previously mentioned with the exception that the compromise is
happening at the kernel level, rather than the user level.

is pursuing is that of node virtualization. Rather than
executing code on the actual cluster nodes, users will
log into virtual nodes running on the physical cluster.
In this way, the virtual nodes could periodically be de-
stroyed and reinstalled from read only media, thereby
removing any Trojan-horse programs. As a second
avenue of defense, we have considered constructing
another NVisionCC plug-in that monitors results re-
turned by a hardware-based kernel integrity checker
(e.g., [16]) to detect compromised operating system
kernels, though this solution has the downfall of in-
creased hardware costs.

5.3 Performance

Now that we have discussed the security properties
of the Forseti scanner, we wish to discuss its perfor-
mance. The timing measurements that we present were
measured on a cluster with dual-processor nodes run-
ning Red Hat Linux with kernel 2.4.21-15.ELsmp. The
collector node used to perform the scans was located
on the same gigabit Ethernet as the cluster nodes as
to minimize round-trip times. This configuration seems
plausible in practice, as the entity performing the secu-
rity analysis of the cluster would likely have the ability
to attach collector nodes to the Ethernet used by the
cluster. Measurements reported are averages over 10
trials.

We tested Forseti by checking the compute nodes on
our cluster for changes to 37 files totaling 2.9 megabytes
in size. On average, we found that Forseti took .9397
seconds per node to carry out the entirety of the in-
tegrity checking process; this includes SCPing the hash
binary (shalsum) to the node being monitored, in-
tegrity checking the 37 files on that node, comparing
the results returned to the compute node equivalence
class profile, and logging any errors to the NVisionCC
database. Slightly more than half of this time (.4978
seconds on average) was spent copying the shalsum bi-
nary to the node being scanned. The majority of the
remaining .4419 seconds is overhead associated with
establishing the SSH connection over which the hash
computation is carried out—integrity checking the 37
files took only .0845 seconds on average, once the SSH
connection was established.

Overall, we feel that these performance numbers are
reasonable. At a scan rate of .9397 seconds per node,
a single collector node can integrity check a 512 node
cluster in just over 8 minutes, while two collector nodes
sharing this task can reduce the scan time to 4 minutes.
In addition, watching a larger number of files also poses
little problem to Forseti. With shalsum, we measured a
throughput of approximately 35.21 MB/second, mean-

ing that the number of files monitored can be increased
greatly without reducing the overall performance of
Forseti. At these rates, administrators should have no
problems configuring Forseti to track a large number of
critical system files at very reasonable scan intervals.

5.4 Use in Single-Image Clusters

We now comment on the use of Forseti on single-
image clusters, such as those built using the Cluster-
matic [5] or Scyld [19] systems. In these types of clus-
ters, the compute nodes tend to be lightweight rather
than full system images which essentially reduces the
task of integrity checking the cluster to the task of in-
tegrity checking the head node. Though it seems that
this is a task that could be easily carried out by a host-
based file integrity checker, we contend that the use of
Forseti still has several advantages over such a solution.
Forseti has the benefit of keeping the file signature
database stored separately from the head node, which
makes the task of corrupting the signature database
more difficult for malicious users or attackers. In ad-
dition, if nodes other than the head node are used to
store important system files or executables, these nodes
can easily be added to Forseti’s scan path with minimal
configuration changes. In short, though Forseti’s main
strengths lie in scanning clusters in which each node
runs a complete system image, it can still be useful in
single-image clusters.

5.5 Summary of Benefits

We now conclude our discussion of the Forseti dis-
tributed file integrity checker with a summary of its
benefits.

Ease of configuration Initial configuration of the
Forseti system is extremely straight-forward and
almost entirely automated. By providing a few
parameters to the supplied scripts, the configura-
tion process for an entire cluster can be completed
in seconds. It should also be noted that only a few
nodes need to be contacted and integrity checked
during this process—one node from each equiv-
alence class. This is in contrast to installing a
file integrity checker designed for the enterprise
computing environment, in which each node being
monitored would need to be configured separately.

Ease of maintenance Configuring new cluster nodes
to be integrity checked by Forseti is as easy as up-
dating a single table in the NVisionCC database.
Since Forseti does not require any software other

than sshd to be running on the nodes that it moni-
tors, simply informing NVisionCC of the existence
of the new node is the only step that needs to be
taken for Forseti to integrity check the node. In
addition, as software on the cluster nodes is up-
graded, the update_sigs.pl script needs to be run
only once per modified node equivalence class to
ensure that Forseti functions correctly. Other file
integrity checking systems require the database to
be updated for each modified node.

Robustness against attack As discussed in Sec-
tion 5.2, Forseti is robust against large classes of
attacks against the system. Any number of cluster
nodes can become compromised with minimal ef-
fect on the accuracy of Forseti’s integrity checking
process.

Efficiency The per-node costs of integrity checking
cluster nodes using the Forseti system are very
reasonable. In our tests, nodes could be integrity
checked in under one second. In the future, we
plan to examine parallel integrity checking algo-
rithms that could reduce the overall execution
time of a cluster-wide Forseti invocation.

In the following section, we discuss related work
in the area of file integrity checking and discuss how
Forseti differs from existing systems.

6 Related Work

File integrity checkers can serve an important role
in enforcing a security policy and currently there is a
wide spectrum of enterprise file integrity checkers that
have been developed, each with different capabilities.
To better understand where the contribution of the
Forseti file integrity checker for HPC cluster security
falls within this spectrum, we briefly survey enterprise
file integrity checkers as summarized in Table 4. Our
survey intention is to highlight representative enter-
prise file integrity checkers across the spectrum, not to
be exhaustive.

The goal of an enterprise file integrity checker is to
detect and report on directory and file system changes
such as existence, ownership, permissions, and last ac-
cess timestamp; these changes that may either be either
accidental or malicious. The technique for determin-
ing file system changes has evolved from comparing an
entire file against a saved entire version to comparing
a single value calculated from the entire contents of a
file against a saved single value. For this reason, file in-
tegrity checkers have always had some form of database
integration to hold baseline data for comparison. It

Integrity Checker

Unique Features

Supported Operat-
ing Systems

AIDE [2] Advanced Intrusion Detection Environment. Freeware using regular expres- | Linux/Unix
sions, requires GNU utilities to compile.

chkrootkit [15] Shell script collection of utilities focusing on checking system binaries for | Linux/Unix
rootkit modification. Independent application with a large number of rootkit
signatures.

BinAudit a.k.a. RIACS Auditing Package. Designed to scan many hosts serially. Can | Unix
collapse entire output into Email, configurable to ignore file/directory changes

Data Sentinel [6] Commercial software. Monitors registry, two-fish encrypted reports stored in | Windows

XML, CSV, and HTML.

Fcheck

Reports deviations from system baseline snapshot. Requires Perl, dependent
on external executables.

Linux/Unix, Windows

GFI LANguard System
Integrity Monitor [10]

Freeware and commercial application.

Windows, Linux

Integrit [4]

Small memory footprint during runtime. Included with Debian Linux dis-
tributions. Modular for database and cryptographic algorithm support. De-
signed for multiple scans as opposed to one complex scan.

Linux/Unix

Osiris [24]

Uses OpenSSL for encryption/authentication, monitors resident kernel exten-
sions and changes to local user/group databases.

Windows

Samhain [18]

Daemon remembers file changes to minimize change reports (as opposed to a
process invoked from cron). Monitors rootkits and login activities. Central-
ized administration using secure TCP and PGP-signed database support.

Linux/Unix, Mac OS X

Sentinel

Secure, signed logfiles with RIPEMD 160 bit hash. Monitors registry, options

Windows

for autoload scan, and secure shutdown and closing processes.

Tripwire [12]

Commercial licensing for Linux/Unix and Windows.
changes into baseline for future monitoring.

Can roll authorized | Linux/Unix, Windows

Table 4. Summary of enterprise file integrity checkers

is usually the case that the file integrity database is
(1) self-contained without dependence on external pro-
grams that may become compromised and (2) in ASCII
format in order to provide human-readable access for
reading and printing observation.

The message digest or hash value calculated from
the contents of a file for integrity comparison should
be both computationally efficient and infeasible to
reverse. An example of an integrity checker which
does not follow this design rule is the COPS tool [8].
COPS uses CRC signatures designed for streaming er-
ror detection rather than a cryptographic hash func-
tion for file integrity checking. The CRC reversal pro-
cess is widely available, meaning that files can easily
be altered in ways that COPS cannot detect. The
first widespread file integrity checker based on cryp-
tographic hash value comparisons was Tripwire, which
was introduced in 1992. While comparing entire files
with previous versions has the advantage of showing
exactly what changes were made to files, in most cases
knowing only that a change has been detected is enough
along with the obvious resource efficiency gained from
not having to save entire file systems for comparison.

Scalability is another major factor in comparing file
integrity checkers, in terms of number of host file sys-
tems tested, human monitoring effort, and file sizes
(which is the easiest metric to quantify and compare).

All enterprise file integrity checkers exhibit non-linear
speed behavior to varying degrees (slower speeds with
larger files) [23]. Integrity checkers written in C tend to
be the fastest (e.g., AIDE, BinAudit, Integrit, Osiris,
and Samhain) followed by those checkers written in
Perl (e.g., Fcheck) and C++ (e.g., Tripwire). Osiris
and Samhain collect reports and data from clients to a
centralized server where the system can be more easily
administered as opposed to distributed administration
across many hosts. Other specialized features that dis-
tinguish enterprise file integrity checkers include warn-
ings about incorrect configurations, handling race con-
ditions in dynamic environments, and handling corner
file system cases (e.g. file size equal to zero).

Since very few enterprise installations are uniform,
enterprise file integrity checkers require significant con-
tinuous configuration. Also, since file system changes
on enterprise systems may occur for a multitude of
reasons, regular human analysis of reports is essen-
tial. There is no standard monitoring interface, syslog
format, or message exchange system for enterprise file
integrity checkers. File system change alarms are not
typically prioritized across enterprise systems such that
alarms that may be more important (e g. on shared
production servers) are often obscured by sheer vol-
ume.

Monitoring for file system changes on an enterprise

LAN containing hundreds or thousands of hosts is not
the same as monitoring for file system changes on a
HPC cluster with a similar number of nodes—both the
security posture and underlying detection techniques
need to be significantly different for clusters. With this
in mind, the Forseti file integrity checker and the NVi-
sionCC cluster security monitoring system have been
specifically designed for the unique HPC cluster en-
vironment. Forseti scans within HPC cluster equiv-
alence classes producing uniform reports from many
hosts that can be quickly evaluated against common
profiles. Automated security analysis validates file in-
tegrity and presents changes to human operators us-
ing the standard Clumon visual interface (via the NVi-
sionCC plug-in). Human management capability does
not scale linearly as cluster size in nodes grows increas-
ingly larger. For this reason the NVisionCC/Clumon
visual interface is designed to be scalable in human
terms to represent large HPC clusters graphically (in
the thousands of nodes) while simultaneously consol-
idating alarms on individual cluster nodes to prevent
information overload (for instance one file change with
many corresponding directory changes is shown as a
single node alert as opposed to many alerts). The
Forseti/NVisionCC visual interface also presents file
integrity changes along with other security events (pro-
cess monitoring, privilege escalation, port scans) so a
file change can be correlated and prioritized with other
security events in the HPC cluster context. Lastly,
Forseti/NVisionCC file integrity checking in the HPC
cluster environment context is enhanced in contrast to
enterprise systems since the HPC cluster environment
is more constrained with generally fewer critical system
files that change less frequently.

7 Summary

In large-scale commodity clusters, it is often the
case that the compromise of a single node can lead to
the compromise of an entire cluster. In computational
grids, a single compromised node can easily lead to the
compromise of multiple clusters, as was the case with
the TeraGrid break-ins that occurred during the Spring
of 2004. During these types of attacks, important sys-
tem files are often times modified by attackers to help
them gather passwords, avoid logging mechanisms, or
open back-doors into the system. To detect these types
of attacks, we have designed the Forseti distributed file
integrity scanner.

Unlike other file integrity monitoring tools and host-
based intrusion detection systems, Forseti was designed
to meet the needs of the cluster computing environ-
ment. Rather than treating a cluster as a collec-

tion of hundreds or thousands of independent nodes,
Forseti leverages the emergent structure of large-scale
commodity clusters to simplify its configuration and
maintenance and increase the security of the system.
Forseti was designed as a plug-in to the NVisionCC
cluster monitoring package, which provides a conve-
nient framework for scheduling the plug-in and provid-
ing visual feedback to security analysts.

In this paper, we have presented the details of NVi-
sionCC and the Forseti system and examined the secu-
rity of Forseti. We highlighted several attacks against
the system and showed that even a root-level adver-
sary can do very little to falsify results or prevent the
system from carrying out its integrity checks without
being detected. In addition, we presented preliminary
performance results which show that Forseti can mon-
itor our test cluster at a rate of just under one second
per node.

We currently have several directions for future work.
We propose to make minor modifications to Forseti to
make additional checks on the files that it monitors, in-
cluding modification timestamps and the file’s current
permission set. We also plan to provide a mechanism
through which the node scheduler can invoke Forseti
on-demand prior to allocating a node to a user, thereby
allowing users to have confidence in the freshness of the
integrity scan results for the nodes on which their jobs
will run. Our more ambitious plans for future work in-
clude further investigating defenses against an attacker
who is able to intercept and modify system calls on the
nodes being monitored, and investigating parallel node
scanning algorithms.

Acknowledgments

The authors would like to thank Nadir Kiyanclar,
Forrest Xin Meng, Dmitry Mogilevsky, and Michael
Treaster for their thoughts and comments during the
design and implementation of Forseti and for their as-
sistance in maintaining our test cluster.

References

[1] Secure hash standard. Federal Information Pro-
cessing Standards Publication 180-2, Aug. 2002.
(http://csrc.nist.gov/publications/fips/
fips180-2/fips180-2.pdf).

[2] AIDE—advanced intrusion detection environment.
Web Page, Jun. 2005. (http://sourceforge.net/
projects/aide).

[3] R. Anderson and E. Biham. Tiger: A fast new hash
function. Technical report, Cambridge University,
1995.

(4]

[13]

[14]

[15]

[16]

E. L. Cashin. integrit file verification system. Web
Page, Jun. 2005. <(http://integrit.sourceforge.
net).

Clustermatic: A complete cluster solution. Web Page,
Aug. 2004. (http://www.clustermatic.org).
Data sentinel. Web Page, Jun.
(http://www.ionx.co.uk/html/products/
data_sentinel/index.php).

H. Dobbertin, A. Bosselaers, and B. Preneel.
RIPEMD-160, a strengthened version of RIPEMD.
In Fast Software Encryption, number 1039 in Lecture
Notes in Computer Science, pages 71-82, 1996.

D. Farmer and E. H. Spafford. The COPS security
checker system. In USENIX Summer, pages 165-170,
1990.

J. Fullop. Clumon. Web Page, Jun. 2005.
//clumon.ncsa.uiuc.edu/).

GFiLANguard system integrity monitor. Web Page,
Jun. 2005. (http://www.gfi.com/lansim/index.
html).

Grid attacks raise concerns among security ex-
perts. Grid Today, 3(17), Apr. 2004. (http://wuw.
gridtoday.com/04/0426/103080.html).

G. H. Kim and E. H. Spafford. The design and
implementation of tripwire: a file system integrity
checker. In Proceedings of the 2nd ACM Conference on
Computer and communications security, pages 18—29.
ACM Press, 1994.

G. A. Koenig, A. J. Lee, M. Treaster, N. Kiyanclar,
and W. Yurcik. Cluster security with NVisionCC: Pro-
cess monitoring by leveraging emergent properties. In
5th IEEE International Symposium on Cluster Com-
puting and the Grid (CCGrid), May 2005.

A. J. Lee, G. A. Koenig, X. Meng, and W. Yurcik.
Searching for open windows and unlocked doors: Port
scanning in large-scale commodity clusters. In 5th
IEEE International Symposium on Cluster Comput-
ing and the Grid (CCGrid), May 2005.

N. Murilo and K. Steding-Jessen. chkrootkit—locally
checks for signs of a rootkit. Web Page, Jun. 2005.
(http://www.chkrootkit.org).

N. L. Petroni, J. Molina, T. Fraser, and W. A. Ar-
baugh. Copilot: A coprocessor based runtime integrity
monitor. In 13th USENIX Security Symposium, Aug.
2004.

R. Rivest. The MD5 message-digest algorithm. IETF
Request for Comments 1321, Apr. 1992.

The SAMHAIN file integrity / intrusion detection sys-
tem. Web Page, Jun. 2005. (http://la-samhna.de/
samhain/).

Scyld software. Web Page, Aug. 2004. (http://www.
scyld.com/).

M. Treaster, G. A. Koenig, X. Meng, and W. Yurcik.
Detection of privilege escalation for linux cluster se-
curity. In 6th LCI International Conference on Linux
Clusters, Apr. 2005.

X. Wang, Y. L. Yin, and H. Yu. Finding collisions in
the full SHA-1. In Crypto 2005, Aug. 2005.

2005.

(http:

22]

23]

24]

[25]

[26]

X. Wang, H. Yu, and Y. L. Yin. Efficient collision
search attacks on SHA-0. In Crypto 2005, Aug. 2005.
R. Wichman. A comparison of several host/file
integrity checkers (scanners). Web Page, Oct. 2004.
(http://www.la-samhna.de/library/scanners.
html).

B. Wotring. Osiris — host integrity monitoring. Web
Page, Jun. 2005. (http://www.hostintegrity.com/
osiris/).

W. Yurcik, G. A. Koenig, X. Meng, and J. Greenseid.
Cluster security as a unique problem with emergent
properties: Issues and techniques. In The 5th LCI In-
ternational Conference on Linux Clusters: The HPC
Revolution 2004, May 2004.

W. Yurcik, X. Meng, and N. Kiyanclar. NVisionCC: A
visualization framework for high performance cluster
security. In CCS Workshop on Visualization and Data
Mining for Computer Security (VizSEC/DMSEC),
Oct. 2004.

	Home
	TOC
	Go Back

