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Abstract

Linux currently plays an important role in high-end computing systems, but re-

cent work has shown that Linux-related processing costs and variablity in network

processing times can limit the scalability of HPC applications. Measuring and un-

derstanding these overheads is thus key for future use of Linux in large scale HPC

systems. Unfortunately, currently available performance monitoring systems introduce

large overheads, performance data is generally not available on-line or from the operat-

ing system, and the data collected by such systems is generally coarse-grained. In this

paper, we present a low-overhead framework for solving one of these problems: mak-

ing useful operating system performance data available to the application at runtime.

Specifically, we have enhanced Linux Trace Toolkit(LTT) to monitor the performance

characteristics of individual system calls and to make per-request performance data

available to the application. We demonstrate the ability of this framework to monitor

individual network and disk requests, and show that the overhead of our per-request

performance monitoring framework is minimal. We also present preliminary measure-

ments of Linux system call overhead on a simple HPC.

1 Introduction

Scientists use high-performance computing (HPC) systems for the performance benefits of-

fered by these systems—they expect these systems to help them in solving large problems,
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efficiently and in less time. Unfortunately, operating system interference has recently been

reported as limiting application scalability on large-scale machines. For example, ASCI Q

at Los Alamos National Laboratory was taking twice the expected time to complete some

benchmarks (SAGE [11]) because the operating system was interrupting the benchmark

from time to time, resulting in serious performance degradation. Similarly, ASCI White at

Lawrence Livermore National Laboratory have shown serious performance problems in the

past because of operating system issues; identification of these problems was a difficult task

[9, 17]. Researchers spent months finding the exact cause of these performance problems.

Other work has shown that applications run on Linux sometimes scale worse than those run

on specialized lightweight operating systems [3, 4].

Because of this, understanding and analyzing operating system costs in high-performance

environments is imperative to improving system scaling and performance. Only by knowing

system performance details is it possible to know the area in which efficiency of system can be

improved. Unfortunatley, most existing performance monitoring tools either fail to provide

detailed performance information or the price for the information in terms of system overhead

is very large. Tools like Ganglia[12] and Supermon[18], for example, provide system-wide

performance information but do not provide per-request performance information that would

allow for detailed analysis of changing operating system costs. Even more detailed tracing

systems like the Linux Trace Toolkit (LTT) [19] also fail to provide per request performance

information.

In this paper, we present a framework for monitoring the costs of individual operating

system networking and disk system calls from the interrupt announcing data arrival to the

delivery of data to the application. We also show that this framework introduces minimal

monitoring overhead for HPC applications as well as traditional single-node benchmarks.

Finally, we present preliminary information on the variation in performance of Linux system

calls when running a simple HPC benchmark.

2 Monitoring Framework

To gather information on HPC-related Linux kernel requests for later analysis, we developed a

monitoring framework for gathering the performance of individual system calls. The overall

goal is to have each monitored system call return, as part of the system call, metadata

describing where time was spent in the system call. In addition, this must be done without

large costs in terms of monitoring overhead, overhead, latency or bandwidth.
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2.1 Monitoring Architecture
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Figure 1: Architecture.

Figure 1 shows our basic architecture which is built around runtime management of oper-

ating system trace data gathered using a system such as the Linux Trace Toolkit(LTT)[19].

The basic idea is that this tracing tool will collect various events from the kernel during the

processing of a system call and log them to memory. At the completion of a system call, a

system call processor processes system-call-related performance costs and returns a summary

of where time was spent in that system call along with the normal system call results.

To limit the memory overhead of tracing, we assume that, as is the case in system like

LTT, traces are written to circular buffers [20]. In such a system, however, events may

get overwritten from time to time. To avoid loss of the events in our architecture, a trace

analyzer is responsible for processing the circular trace buffer as it fills and putting summary

performance information about system activities into global kernel tables that are later read

by the system call processor. The trace analyzer is also explicitly run by the system call

processor to analyze partially filled buffers prior to returning performance information about

a system call.
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2.2 Monitoring Implementation

The basic approach for implementing this framework uses LTT in flight recorder mode. This

section describes implementation details along with the following challenges we faced during

implementation.

1. There was not sufficient support in Linux kernel to enable tracing of individual packets

arriving from network. It was required to add this support.

2. The LTT was not tracing the events required for generating detailed per-request

information. It was required to add more and modify some existing events.

3. There was a synchronization problem faced by the trace analyzer while reading the

events from circular buffer.

The following subsection discusses the first two challenges and the third challenge is

discussed in next subsection which describes trace analyzer in detail.

Gathering Kernel Trace Information. As mentioned above, our current monitoring

framework implementation is built using the Linux Trace Toolkit (LTT) to gather traces

for later analysis. LTT continuously logs explicitly recorded events happening in the kernel

to a preallocated circular buffer. Our framework uses LTT in flight recorder mode, a mode

in which LTT continuously writes the events happening in the kernel into the preallocated

circular buffer. To facilitate external processing of these buffers, we added a callback mecha-

nism to LTT that causes it to invoke an in-kernel callback whenever the flight recorder buffer

becomes full.

While LTT is sufficient for gathering information about many kernel activities, it did not

initially track which network packet was being processed during each event, and Linux did

not give network packets unique identifiers to allow them to be tracked and associated with

specific system calls that later delivered the data in these packets. In addition, LTT did not

include sufficient event logging to track the lifetime of packets through the kernel networking

stack. To address these problem, we added a unique identifier to each Linux skbuff and

event logging to the network stack that logged the buffer identifier and associated kernel

event logging at packet interrupt, queuing, and delivery.

Trace Analyzer. The trace analyzer is implemented in the kernel as the full buffer callback

target for LTT and as an explicitly callable entity for the system call processor. When called,

the trace analyzer scans the current LTT buffer, extracts performance data from the buffer

and writes it into the appropriate global kernel-table. This allows the system call processor
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to later retrieve relevant system call performance information after the reuse of a tracing

buffer.

However, while trace analyzer is reading from the circular buffer, a synchronization prob-

lem can happen between trace analyzer and LTT. Figure 2 shows a possible scenario which

can create a synchronization problem. It shows that an IRQ can preempt the writing of the

last event in the circular buffer. When this happens, LTT will try to log an IRQ event in

the buffer and due to absence of enough space in the buffer, LTT will invoke trace analyzer.

As a result, trace analyzer will try to read from an incomplete buffer where the data is not

yet written.

Figure 2: Synchronization Issue.

Figure 3 shows the process of avoiding this synchronization problem within our frame-

work. Because we are currently running in a non-SMP kernel, our current implementation

avoids this situation by delaying the invocation of trace analyzer until the receipt of a non-irq

event. This non-IRQ event ensures that the last event in the buffer is completely written

and it is now safe to read the last event from the buffer. For events received between a

buffer filling and another non-IRQ even being logged, a separate extended buffer is used

to temporarily held events logged from within an interrupt context. When run, the trace

analyzer then not only scans the filled buffer but it also scans the extended buffer.

There are various other possible ways of solving this problem which we discarded. For

example, when LTT encounters an IRQ event as the last event, it could invoke the trace
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analyzer and have it scan the circular buffer excluding the last event. However, while reading

the circular buffer, the trace analyzer has to create performance data and allocate memory

for global kernel tables, which is an expensive operation. Because we want to exit interrupt

context as soon as possible, we discarded this solution. In the approach which we followed,

memory is still allocated, but the allocation is much less and faster. Another approach could

be to start scanning the circular buffer before it is completely filled by setting a high water

mark. In this approach if we encounter an IRQ event on reaching the water mark, we will

still be having the space in the circular buffer to log the IRQ event and then scan the buffer

on next non-IRQ event. But this approach alone will fail as we can encounter a series of

IRQ’s which can fill the remaining circular buffer and then we again have to fall back on our

approach to solve the problem.
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Figure 3: Avoiding incomplete read of last event.

As the trace analyzer processes traces, it records information about asynchronous activ-

ities, for example packet processing, in global kernel tables, with one global kernel table for

each source of kernel activity, for example network processing or disk activity. The size of

these tables grow and reduce dynamically as the information is added or deleted from them.

As mentioned above, information is added by the trace analyzer. Stale information is deleted

by the system call processor as it handles system calls.
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System Call Processor. The system call processor (SCP) is used by modified versions of

system calls for getting associated performance data. The SCP knows which kernel-table to

query in order to get the required performance data for the system call which is asking for the

performance data associated with it. When a system call is about to finish, the SCP invokes

the trace analyzer to process any partially filled trace buffers, extracts and removes any

system call-relevant information from the appropriate global table, and returns a summary

of the performance of the system call to the user. We have currently implemented enhanced

versions of two system calls and their associated kernel code, the recvfrom and associated

networking calls and the disk-relevant portions of the read system call.

Status Currently the framework is implemented in Linux kernel version 2.6.3 and will

soon be available as a kernel patch. The patch will need to be applied to the kernel already

patched with Linux Trace Toolkit.

3 Available Measurements

Using our per-request performance monitoring framework, a wide variety of potential performance-

degrading operating system costs can be measured. Tables 1 and 2 show examples of the

performance information returned by the modified version of recvfrom and read.

Type of Event this process other processes
Count Time (usecs) Count Time (usecs)

Page Fault’s 3 17 0 0
IRQ’s 14 60 0 0
Process Scheduling 1 15 60 100
Packets Read 16 N/A 12 N/A

Total time taken by recvfrom = 3819294 usecs
Time spent in waiting for first packet = 3818893 usecs

Table 1: Example Data Available from recvfrom

As can be seen from these tables, our framework is capable of monitoring network device

interrupt and scheduling costs; these were the sources of performance degradation and in-

stability on ASCI Q and ASCI White. A tool such as ours would potentially be very useful

in such system for discovering such costs.
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Type of Event this process other processes
Count Time (usecs) Count Time (usecs)

Page Fault’s 4882 27063 0 0
IRQ’s 70 621 1070 8450
Process Scheduling 212 101830 230 4128

Total time taken by read in reading 64 MB file = 917069 usecs

Table 2: Example Data Available from read

4 Monitoring Overhead Measurements

Because large performance degradations from our framework would limit its usefulness to

studying HPC OS performance, we have spent substantial effort quantifying the impact of our

framework on the performance of a variety of microbenchmarks, single-processor application

benchmarks, and MPI benchmarks. We ran our tests between two 2.2GHz Intel XEON

machines with 512MB of memory and Intel EEPRO 1000 Gigabit ethernet cards configured

to use MPICH 1.2.6 with the p4 device. We considered 3 different configurations of the

Linux kernel to compare.

• Linux kernel version 2.6.3 with no event tracing. (cfg1)

• Linux kernel in which LTT event tracing is enabled but without implementation of our

framework. (cfg2)

• Linux kernel in which our framework is implemented along with tracing of events by

LTT. (cfg3)

4.1 Simple Benchmarks

To establish lower and upper bounds on the overhead associated with per-request perfor-

mance monitoring, we ran single-machine computational benchmarks and several kernel-

intensive communication benchmarks. To establish a lower bound for overhead, we ran

15 of the SPECINT99 and SPECFP99 benchmarks. On these benchmarks, which are not

kernel-intensive, we observed benchmark slowdowns between 0% and 2.75%.

We measured the likely upper bound of monitoring overhead on computation and com-

munication using an MPI ping-pong program and a computational program that does a

fixed amount of work while communication is in progress. We then used these programs
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to measure the overhead communication imposes on computational processes in the three

kernels and the effective MPI bandwidths and latencies achievable by MPICH using these

three kernels. The same MPI ping-pong program was also used to calculate overhead in

terms of bandwidth and latency.
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Figure 4: Overhead Measurement
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Figure 5: Latency and Bandwidth Measurement

These results show the overhead for doing fixed amount of work to be about (4-5)% above

that of LTT and about (9-10)% total. The overhead in termas of latency and bandwidth

is approximately the same. Note that this represents worst-case application overhead which
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can be incurred by any application as it almost entirely communication-bound. As will

be shown in the next section, applications that include a more substantial computational

component in addition to network communication, for example standard HPC applications,

do not incur such a substantial overhead.

4.2 NAS Parallel Benchmarks.

To measure the overhead our monitoring framework imposes on MPI applications, we ran sev-

eral NAS parallel benchmarks [6] between a pair of machines modified to include our above-

described per-request monitoring framework. Because these benchmarks involve less network

communication than ping-pong tests and more communication than the SPEC Benchmarks,

they should represent the average-case slowdown of our monitoring framework. Table 3 show

that the overhead incurred by these benchmarks is less than 4%, with the large majority

of the overhead coming from the system tracing framework. On larger systems with more

substantial communication requirements, these numbers will be higher, but should generally

be less than the communicatio-intensive ping-pong test described in the previous section.

Name of Benchmark Class Time(secs) in differrent configuration types
Linux (secs) Linux+LTT

(secs/%slowdown)
Linux+LTT
+Per-request
(secs/%slowdown)

CG B 196.18 202.65/3.3% 203.68/3.8%
LU B 701.08 705.94/0.7% 710.51/1.3%
EP B 239.94 240.69/0.3% 240.59/0.3%
MG B 28.63 29.68/3.7% 29.70/3.7%

Table 3: Runtime and Percent Slowdown of selected NAS Parallel Benchmarks with and
without per-request monitoring

5 System Overheads on a Simple HPC Benchmark

Because UNIX operating system overheads have recently been seen as a major factor effecting

application scalability and performance, we have run a preliminary test of UNIX operating

system overheads. We changed the mpich 1.2.6 p4 device to use our modified recvfrom

system call and to save and record the amount of time spent in recvfrom() system call

processing. Figure 6 shows the distribution of recvfrom system call times over the course of
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running the class B NAS CG benchmark. The large majority of system calls take between

0 and 25 microseconds, with a rapid falloff out through 125 microseconds. Most of the

receives in the 0 to 25 microsecond range processed no kernel skbuffs and therefore had no

kernel overhead; we hypothesize that this is because other receives that took longer than

25 microseconds copied data out of skbuffs into local kernel buffers. For these receives,

our framework does measure substantial interrupt processing, scheduling, and data copy

overheads, though the majority of this time is not surprisingly, spent waiting for data to arrive

at the device. We are currently further studying this behavior to quantify the breakdown

of kernel processing times for monitored packets and to determine how to account for inter-

packet kernel buffering behaviors. We are also planning data collection runs on larger systems

and more complex applications to further study UNIX system overheads using our newly

developed framework.

6 Related Work

This section describes various tools currently available for the purpose of performance mon-

itoring and various services these tools provide. A tool which is meant to be used for

performance monitoring should be able to provide performance information which is related

to individual OS requests as opposed to general system wide profiling information that most
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of the currently available tools provide. Moreover the information generated will be more

helpful if it is detailed enough to be of some use and available to the applications while they

are running instead of after they are finished processing. A great deal of prior work has

been done in the area of kernel performance monitoring, though little focused on per-request

kernel monitoring [5, 7, 8, 16, 18]. The tools and techniques available for kernel performance

monitoring can be broadly divided into three main categories depending upon the approach

taken.

1. Trace Based Tools The most widely used are trace-based tools. These tools monitor

kernel or user-space code by logging various events taking place into a log either on disk or

in memory. They also include various tools that read these log files and provide the user

with various different presentations of the trace. It is then the job of user to interpret any

anomaly in system behavior by looking at the trace. Some examples of these tools are Linux

Trace Toolkit, tracing infrastructure in K42 [10] and Magpie [1].

2. Statistical Sampling-Based Tools These tools depend upon the presence of hard-

ware performance counters in the machine architecture the tools are running on. These tools

periodically read the values in hardware counters instead of tracing events. As the number

of hardware counters is fixed, these tools are not helpful when in-depth performance infor-

mation is required. These tools also require exclusive control of these counters and hence

cannot be used when other similar other tools are running on a system. Some examples

of these tools are Digital Continuous Profiling Infrastructure (dcpi) [7], Oprofile [16] and

Morph [21].

3. Other tools There are some tools such as Paradyn [13], Crosswalk [14], IPS-2[8],

Ganglia [12] and Supermon [18] which does not fall into any of the above two categories. Some

of these use a technique called dynamic instrumentation to efficiently obtain performance

profiles of unmodified executables and provide performance data down to the procedure and

statement level.

Figure 7 lists various tools currently available. The figure summarizes various services

that we want to be present in a tool meant for providing performance information, and what

among these services currently available monitoring tools provide. It is evident that none of

the tools provide all the services that our framework seeks to provide.
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Figure 7: Currently available performance monitoring tools.

7 Future Work

A variety of future work could be done to extend and utilize our framework. Such future work

could include its use within other projects such as message-centric monitoring or anomaly

detection. It could also include improving our framework for use on multiprocessor systems

as well as with preemptable kernels. Finally, extensions to the framework are needed for

supporting a more diverse collection of system calls. Potential future work will also include

running the various benchmarks over large cluster of machines. This will require dedicated

machines each running our modified Linux kernel and exclusive access to a big cluster is not

yet available to us.

Usage of the framework within other projects Now that an initial implementation

is complete, the resulting framework can be used to understand the local impacts of oper-

ating system performance on a variety of different HPC applications. In particular, it can

be used to monitor individual system call performance on large-scale systems and longer-

running applications, and to add instrumentation for further system calls and support for

kernel-bypass communication mechanisms such as the Myrinet GM messaging layer [15].

For broader system monitoring support, integrating the work with recent work on message-

centric monitoring [2] is also an interesting possibility. Finally, integrating our framework

with automatic anomaly detection software might allow for automated detection of operating

system-induced performance anomalies.
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Improving LTT to enable usage of the framework on multiprocessors Multipro-

cessor systems result in several different issues that will have to be addressed in order to

implement this framework on those systems, one of which is synchronization issue as de-

scribed in section 2.2. Other issues could be migration of processes to other processors.

A preemptable kernel could also result in more complexity to the framework because any

event can be responsible for incomplete events in the tracing buffer. Since LTT uses a single

buffer to log events from all the processors, it would then become very difficult to extract

performance information from that single buffer as there could be several incomplete events

in the circular buffer.

One way to address these issues would be to disable preemption in the kernel while LTT is

writing events to a buffer. Disabling preemption will also solve the thread migration problem.

Thread migration can result in execution of a single system call on multiple processors, due

to which performance data related to a particular system call will be associated with more

than one processor. It is also possible to adopt the approach taken by the K42 tracing

infrastructure which assigns one individual buffer for every processor. This one buffer per

processor approach will work fine if there is no thread migration in the kernel. We can then

apply our synchronization solution on each individual buffer.

8 Conclusions

In this paper, we presented a new framework for fine-grained analysis of operating system

overheads in HPC applications. This framework, built by modifying and extending tools such

as the Linux Trace Toolkit, adds minimal overhead to the runtime of HPC applications and

returns detailed information on OS overheads in system calls. We also presented preliminary

numbers on the behavior of Linux networking system calls on simple HPC benchmarks and

showed that, at least for these applications, a carefully constructed Linux cluster setup has

relatively predictable system call performance. In this figure, this framework will serve as a

foundation for work on optimizing operating systems and network protocols to better serve

the needs of high-performance applications, as well as detecting anomalous operating system

behavior in running systems.
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