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Abstract

Space-filling curves have been widely used in math-
ematics and to transform multi-dimensional prob-
lems into one-dimensional forms. For scientific ap-
plications, ordering data or computation along space-
filling curves can be useful for exploiting locality when
partitioning onto parallel systems or when restruc-
turing to exploit memory hierarchy. In this paper, we
present an efficient approach for enumerating points
or mapping to points along space-filling curves. We
introduce a new table specification, position specifica-
tion, for mapping to points along space-filling curves.
We discuss how this framework can be used for re-
ordering computation. Experiments on three modern
microprocessor based platforms show that our algo-
rithm is up to a factor of 72 faster for enumerating
points along a curve and up to a factor of 11 faster
for mapping to points on the curve than a previous
byte-oriented, non-recursive implementation.

1 Introduction

Space-filling curves have been used in a variety of
fields including mathematics, algorithms, geographi-
cal information systems, image processing, databases,
circuit design, cryptology, and scientific computing [8,
23, 1, 29, 5, 2, 19, 26, 10, 20, 21, 16, 14]. Salmon and
Warren used space-filling curve for partitioning and
reordering computation in N-body simulations for
improving data locality of both their in-core and out-
core implementations [26]. Challacombe used space-
filling curves to efficiently partition a sparse matrix
computation onto a parallel system [10]. Mellor-
Crummey et. al [20, 21] and Hu et. al [14] investi-
gated using space-filling curves for data and compu-
tation reordering to improve memory hierarchy uti-
lization for irregular applications.

Two main research areas on space-filling curves
are curve traversal and curve indexing. Traversing
a space-filling curve is to enumerate points along

the curve. Curve indexing refers to mapping coordi-
nate position of a point in a multi-dimensional space
into its traversal position along a curve and back.
Bially presented algorithms for converting back and
forth between a point in an n-dimensional cube and
a number representing a position along a space-filling
curve [4]. He described the algorithm in a diagram-
matic form and gave a numerical procedure to con-
struct the diagrams. Butz proposed an algorithm
for generating a Hilbert curve by mapping a point
in a one-dimensional space into a point in an n-
dimensional space by using circular shift and exclusive-
or operations on bytes [9]. Although one can generate
a Hilbert curve in an arbitrary dimensional space by
following Bially’s or Butz’s description, their algo-
rithms are inefficient.

Many researchers have studied recursive algorithms
for efficiently generating space-filling curves in two
and three dimensional spaces [25, 24, 13, 11, 28].
Bartholdi et al. [3] described a vertex-labeling method
to generate algorithms for manipulating a Hilbert
curve in 2D space and its application to the genera-
tion of 2D Sierpiński and Peano curves. Prusinkiewicz
al. [24] described how to use the formalism of L-
systems for expressing and drawing FASS curves —
curves that are space-Filling, self-Avoiding, Simple
and self-Similar. More recently, Breinholt and Schierz
gave an algorithm for generating a 2D Hilbert space-
filling curve using integer operations and recursion [6].
However, none of these recursive curve generation al-
gorithms can be easily adapted to higher-dimensional
spaces.

Several researchers have studied curve indexing
in two- and three- dimensional spaces [12, 17, 18].
Fisher described a bit-serial algorithm for generating
coordinates of any point along a Hilbert curve in a
unit square given the traversal position of the point, a
Hilbert process and an inverse function, called Berthil
process [12]. A state transition table ptab and two
other tables ctab and ttab were used to determine
orientation and output values in different iterations
of the processes. Liu and Schrack presented algo-
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rithms for encoding (from coordinates of a point to
its traversal position) and decoding (from traversal
position of a point to its coordinates) a 2D and 3D
Hilbert curve [17, 18].

Our approach differs from other techniques de-
scribed in the literature in two ways. First, we use a
different curve representation and two types of speci-
fication tables – a movement specification table and a
position specification table. Our curve representation
is simple and general. The movement specification
table indicates the direction of each move along a
curve. The position specification tables record in-
formation about coordinate and traversal positions
of each point along a curve. Second, we use a table-
driven turtle traversal algorithm to enumerate points
in a multi-dimensional space along a space-filling curve
and table-driven indexing algorithms for transform-
ing coordinate position of a point into its traversal
position along a space-filling curve and back. The
tables are pre-generated based on both geometric
and arithmetic properties of the curve. This en-
ables us to generate space-filling curves in arbitrarily
high-dimensional spaces much more efficiently than
previous approaches. We evaluated the overall per-
formance for traversing and indexing three differ-
ent space-filling curves and compared the results us-
ing Hilbert curve with the results from a fast imple-
mentation of Butz’s byte-oriented non-recursive algo-
rithm by Moore [22]. Experimental results on three
modern microprocessor-based platforms show that
our curve generation algorithm performs up to a fac-
tor of 72 faster on curve traversal and up to a factor of
11 faster on curve indexing than the previous byte-
oriented non-recursive implementation. Traversing
and indexing a Hilbert curve is more efficient than
the other two space-filling curves in most test cases.

The rest of the paper is organized as follows. Sec-
tion 2 briefly describes SFCGen, a framework for gen-
erating space-filling curves. Section 3 presents a new
table specification for indexing. Section 4 describes
table-driven algorithms for traversing and indexing
a space-filling curve. Section 5 discusses how the
framework for curve generation can be used for or-
dering computation. Section 6 reports experimental
results and Section 7 presents our conclusions.

2 SFCGen: A Framework for

Curve Generation

SFCGen is a general framework for generating a space-
filling curve in arbitrarily high dimensional space [15].
In SFCGen, we use a general but simple curve rep-
resentation for space-filling curves. A space-filling

Table 1: Movement specification table for Hilbert curves.

Current Level Next Level

ne en, n ne, e ne, s ws, ⊥
sw ws, s sw, w sw, n en, ⊥
ws sw, w ws, s ws, e ne, ⊥
en ne, e en, n en, w sw, ⊥

curve at any recursion level is represented by its base
level approximation, called primitive curve. Each
primitive curve is described as a sequence of criti-
cal moves. To represent an n-dimensional Morton,
Hilbert, or Peano primitive curve, we use n moves
m1m2...mn, where mj(1 ≤ j ≤ n) describes the
move from the kj−1-th node to its immediate succes-
sor node and k is the refinement factor of the curve.
For example, the four Hilbert primitive curves 1 in
Figure 1(a) are se, ne, en, wn curves. “s”, “n”, “w”,
and “e” stand for south, north, west, and east moves.
With this representation, a full set of n-dimensional
Hilbert, Morton, or Peano primitive curves includes
2nn! different primitive curves.

To traverse a space-filling curve efficiently, we use
a movement specification table. A movement spec-
ification table consists of a vector of table rows. Each
table row recursively defines a space-filling curve. Each
entry in a table row is a pair. The first element in
the pair specifies a table row representing a primi-
tive curve at the next level of recursion. The second
element in the pair specifies the movement direction
after finishing the aforementioned primitive curve. In
our movement specification table, each curve is rep-
resented by its approximation at the base level. For
example, the curve in Figure 1(b) is represented by
“ne” in the table. The bold gray curve shows the ap-
proximated primitive curve. Table 1 shows the move-
ment specification table for generating 2D Hilbert
curves. It contains only four table rows for the prim-
itive curves that are needed to create the curve in
Figure 1(b). The “Next Level” portion of the table
row should be read left to right. “⊥” in the last table
entry of each row represents no movement.

Specification tables for different space-filling curves
are precomputed automatically based on geometric
and arithmetic properties of the curves. To build
the tables efficiently, we use a demand-driven table
generation algorithm. The algorithm only creates
curve specifications that are actually needed during
the process of curve generation. This approach also
significantly reduces the table sizes which improves

1There are eight Hilbert directed primitive curves in two
dimensions.
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(a) Four directed primitive curves (b) A level 2 curve

Figure 1: 2D Hilbert curves.

performance of the traversing algorithm.

3 Position Specification

A position specification table describes position of
each subcurve at the next level in the curve from
which it is refined. We use two different position
specification tables, c2i and i2c, which contain in-
formation about coordinate position and traversal
position of a subcurve in the enclosing curve at the
next level. Like the movement specification table,
both the c2i and i2c tables contain a “Current Level”
column and multiple “NextLevel” columns for defin-
ing curve refinement. However, the information
recorded in these two types of tables is quite dif-
ferent. The movement specification table specifies
moves that connect a sequence of subcurves, while
the position specification tables record position of
each subcurve. Table 2 and 3 show the c2i and i2c
tables for a 2D Peano curve. In the c2i table, the
coordinate position of each subcurve is its column
number under the “Next Level” section. The traver-
sal position is recorded in the second element of each
table entry. In contrast, the i2c table represents the
coordinate position by the second element of each ta-
ble entry and the traversal position of each subcurve
by its column number.

For example, the second entry of the fourth table
row in Table 2 shows that a “se” curve at the next
level is in coordinate position (0, 1) or 1 since it is
in the second column and its traversal position along
the “ne” curve at the current level is 5 as shown in
Figure 2. On the other hand, the second table entry
of the fourth table row in Table 3 shows that sub-
curve “nw” at the next level is in coordinate position
(1, 0) or 3 since the second element of the table entry
is 3. The column number 2 implies that its traversal
position along the “ne” curve at the current level is
1.

4 Curve Traversal and Indexing

Using the movement specification table or the specifi-
cation tables described in Section 3, we can efficiently
traverse along a space-filling curve or perform vari-
ous indexing operations on any point along the curve.
We describe three of them in this paper.

4.1 Curve Traversal

A key part of our table-driven approach is the uni-
versal turtle traversal algorithm, which traverses a
self-similar space-filling curve based on a movement
specification table. The algorithm is general enough
for generating a variety of curves and efficient enough
for use in applications that want to order computa-
tion along a specific curve. To traverse a curve of
n-dimensions, it starts from the n-dimensional point
�0 with an integer extent along each dimension that
the curve will cover. The initial value of the table in-
dex variable should point to a table row matching the
primitive curve approximation of the curve. The al-
gorithm first checks if it has reached the last recursion
level by calling IsBaseCase. If true, it calls BaseAc-
tion to print the primitive curve or perform certain
calculations by calling a routine that contains the
calculations, otherwise, it divides the current space
into subspaces and calls Uturtle for each subspace re-
cursively. Then it calls a move routine to connect or
move from an ending point of a curve in one sub-
space to the starting point of the curve in the next
subspace.

Our algorithm is more general than previous algo-
rithms in several aspects. First, the algorithm itself
is curve- and dimensionality- independent. Second,
each dimension may have a different extent. Third,
the number of recursion levels can be controlled by
adjusting the subspace size at the last recursion level.
By controlling the number of recursion levels in dif-
ferent subspaces, we can also apply the algorithm to
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Figure 2: Indexing a 2D Peano curve.

Table 2: Coordinates to traversal index position specification table for a 2D Peano curve.

Current Level Next Level

sw sw, 8 nw, 3 sw, 2 se, 7 ne, 4 se, 1 sw, 6 nw, 5 sw, 0

se se, 2 ne, 3 se, 8 sw, 1 nw, 4 sw, 7 se, 0 ne, 5 se, 6

nw nw, 6 sw, 5 nw, 0 ne, 7 se, 4 ne, 1 nw, 8 sw, 3 nw, 2

ne ne, 0 se, 5 ne, 6 nw, 1 sw, 4 nw, 7 ne, 2 se, 3 ne, 8

Uturtle(P, c, e, table, row, args)
P: routine to be called at base level;
c: coordinates of a point in a multi-dimensional space;
e: extent at current level;
table: movement specification table;
row: a table row index in table;
args: arguments to be passed to P;
1. if (!IsBaseCase(e))
2. Resize(e);
3. for each column col in a row
4. Uturtle(P,c,e,table,table[row][col].nextRow,args);
5. Move(c, e, table[row][col]);
6. else BaseAction(P, c, e, args);

Figure 3: Universal turtle algorithm.

applications that require non-uniform refinement. To
improve efficiency of the algorithm, each move is de-
scribed by a 2-tuple (dim, distance) instead of a dis-
tance vector. For curves with moves only along coor-
dinate axes (e.g. Hilbert and Peano curves), dim rep-
resents the axis of the move, and distance represents
a movement distance, which can be a unit forward
or backward along the axis. For curves with diago-
nal moves, dim specifies the axis with lowest traver-
sal priority and distance specifies the distance along
this dimension. A specialized implementation of the
move function for such curves interprets this encod-
ing. This axial movement specification eliminates
unnecessary element-wise checking and calculation

for each move, particularly at the lowest recursion
level. The (dim, distance) representation naturally
describes moves in many space-filling curves includ-
ing the Hilbert and the Peano curves. It substantially
reduces the low-level operations for other curves in-
cluding the Morton and the Sierpiński curves.

4.2 Computing traversal position

Using the c2i table, we compute traversal position
of a point along a space-filling curve from its coor-
dinates in the space. Assume c, l, d are, respec-
tively, the coordinates of a given point, the recur-
sion level of the curve, and the dimensionality of the
space. table and initrow are the position specifica-
tion table and the initial table row that represents
the primitive curve approximation of the curve. The
algorithm first initializes the traversal position p to
0 and sets the current table row to the initial ta-
ble row. It then concatenates the coordinates of
the point c into variable coord = cdcd−1...c1, where
ci = c1

i c
2
i ...c

l
i(1 ≤ i ≤ d) represents the coordinate

in dimension i. coord is then bit transposed into
c1c2...cl, where cj = cj

dc
j
d−1...c

j
1 (1 ≤ j ≤ l). For

each recursion level l′, the algorithm extracts coor-
dinate position at level l′, finds the table entry, gets
the traversal position at level l′ from the table entry,
and updates the traversal position p. It updates the
table row based on the current table entry before it
checks the next level.
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Table 3: Traversal index to coordinates position specification table for a 2D Peano curve.

Current Level Next Level

sw sw, 8 se, 5 sw, 2 nw, 1 ne, 4 nw, 7 sw, 6 se, 3 sw, 0

se se, 6 sw, 3 se, 0 ne, 1 nw, 4 ne, 7 se, 8 sw, 5 se, 2

nw nw, 2 ne, 5 nw, 8 sw, 7 se, 4 sw, 1 nw, 0 ne, 3 nw, 6

ne ne, 0 nw, 3 ne, 6 se, 7 sw, 4 se, 1 ne, 2 nw, 5 ne, 8

By using the precomputed position specification
table, our curve indexing algorithm is faster than
the previous byte-oriented algorithm. Our algorithm
trades table space for execution speed. The size of
the tables needed is modest. For example, our tables
only contain 12, 32, 80, 192, and 448 table rows for
Hilbert curves in three to seven dimensions, respec-
tively.

4.3 Computing coordinates

Similarly, we can compute the coordinates of a point
from its traversal position along a curve. The i2c
algorithm uses an i2c position specification table.
It extracts the traversal position of the point at each
level, indexes the table entry in the i2c table, and re-
trieves the coordinate position at that level from the
table entry. After it collects the coordinate positions
from all levels, it performs a similar bit transpose to
obtain coordinates of the point.

5 Reordering Computation
Using SFCGen

SFCGen can be used for reordering data and compu-
tation in scientific applications through curve traver-
sal and indexing. We only discuss computation re-
ordering with the turtle traversal algorithm in this
paper. Suppose we have a routine prog which con-
tains the computation we want to apply to a sequence
of subspaces ordered along a space-filling curve. Once
the specification tables have been generated, to use
SFCGen, we only need to replace prog with the fol-
lowing call to our traversal routine turtle and pass
prog and its arguments args to turtle.

turtle(prog, origin, bounds, args);

origin represents the coordinates of the starting point.
bounds is the bounds of an iteration space. When
the turtle traversal algorithm reaches the base level
where extents of one or more dimensions are less than
or equal to a predefined minimum extent, it calls rou-
tine BaseAction with the coordinates of the current

do j = 1, n2

do k = 1, n3

do i = 1, n1

c(i,j) = c(i,j) + a(i,k) * b(k,j)

Figure 4: Matrix multiplication.

point in the iteration space along with the routine
prog and its arguments. BaseAction invokes prog
only if the current point is within the iteration space.
A sketch of the BaseAction routine is shown below.

void BaseAction(FP prog, C &c, va_list args) {

int c1, c2, c3;

c1 = c.GetDim(0);

c2 = c.GetDim(1);

c3 = c.GetDim(2);

/* if coordinates are in bounds, call prog */

if (c1 <= ub1 && c2 <= ub2 && c3 <= ub3) {

(*prog)(c1, c2, c3, args);

}

};

Consider using a space-filling curve to order a ma-
trix multiplication computation shown in Figure 4.
Let each point along the curve represent the partial
computation of multiplying a pair of blocks from the
input matrices. Using a space-filling curve to order
this computation improves cache reuse of blocks over
a conventional row or column based traversal orders
of the blocks. At the base level, prog is called to
perform computation in one subspace. Using ma-
trix multiplication as an example, the computation
in prog can be modified as follows.

do j = c2, min(c2+blk2-1,n2)

do k = c3, min(c3+blk3-1,n3)

do i = c1, min(c1+blk1-1,n1)

c(i,j) = c(i,j) + a(i,k) * b(k,j)

c1, c2, and c3 are the coordinates of the current
point. blk1, blk2, and blk3 are dimension extents
of the i, j, and k dimensions of the subspace at the
base level. Figure 5 shows computation reorderings
in a 3D space 2048 × 1024 × 1500 using a Hilbert
curve with two different minimum block sizes at the
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Figure 5: Reordering computation using a Hilbert curve
in 3D space 2048 × 1024 × 1500.

base level. Applying a similar reordering with block
size of 16 or 64 to two different iteration spaces,
2048 × 1024 × 1500 and 2048 × 2048 × 2048, we
measured the execution performance of the matrix
multiplication on a 300 MHz SGI Origin 2000 ma-
chine with a 32KB L1 cache and an 8MB L2 cache.
We collected the number of cycles, L1 cache misses,
L2 cache misses, and TLB misses. Table 4 shows a
comparison of four different implementations of ma-
trix multiply. All source codes were compiled using
the MIPSpro cc/CC 7.3.1.3m compiler with either “-
O2” or “-O3” as specified in Table 4. orig refers to
matrix multiplication using the loop nest shown in
Figure 4; atlas refers to the optimized implementa-
tion of matrix multiply generated by ATLAS 2.0 [27];
blas refers to the DGEMM routine from the BLAS
library on the machine; hil16 and hil64 are the im-
plementations of matrix multiply described earlier in
this section, which use a 3D space-filling curve with
block sizes of 16 and 64 to order computation.

Our measurements show that matrix multiply af-
ter computation reordering along a space-filling curve
can be fast: when multiplying 20482 matrices, it
was faster than both the blas and atlas implemen-
tations. For the test on non-square matrices, us-
ing the space-filling curve ordering was faster than
atlas, but not quite as fast as the blas. The main
point of this example is to show that space-filling
curve traversal can be used to optimize performance
by managing locality. However, if our space-filling
curve traversal algorithm had not been efficient, any
performance benefit due to improved locality could
have been overshadowed by the cost of traversing the
curve.

Table 4: Performance (counts in millions) of matrix mul-
tiplication.

L1 L2 TLB
Codes Cycles misses misses misses

a(2048, 2048) × b(2048, 2048)

orig-O2 82907 2286 471 2.29
orig-O3 9988 1047 6.98 1.79
blas 19248 2478 5.36 0.22

atlas-O2 56938 2160 526 291
atlas-O3 10118 1048 7.20 1.80
hil16-O2 29936 334 3.17 12.2
hil64-O3 9862 970 3.09 12.6

a(2048, 1500) × b(1500, 1024)

orig-O2 28903 838 161 0.84
orig-O3 3613 218 2.05 0.56
blas 3466 280 1.33 0.07

atlas-O2 19263 393 161 105
atlas-O3 3680 219 2.20 0.56
hil16-O2 10963 113 1.20 3.48
hil64-O3 3599 225 1.20 1.30

6 Experimental Results

We evaluated the performance of our curve gener-
ation algorithm by comparing it to an efficient im-
plementation of Butz’s byte-oriented algorithm [9]
by Doug Moore at Rice University [22]. Our algo-
rithm is implemented in C++, whereas Butz’s is im-
plemented in C. We compiled all of the programs
using the vendors’ compilers with “-O3”. We eval-
uated the performance of these algorithms on three
modern microprocessor-based platforms: a 300MHz
SGI Origin 2000, a 2.4GHz Intel Pentium 4 PC, and
a 900MHz Intel Itanium 2 workstation. The compil-
ers we used in the experiments are MIPSpro cc/CC
7.3.1.3m on the Origin 2000, Gnu C++ V2.96 on the
Pentium 4, and Intel C++ V8.0 on the Itanium 2.
For each execution of an algorithm, we measured its
number of graduated instructions and execution time
using hardware performance counters. The number
of instructions and the number of cycles per visited
point on a space-filling curve are presented. Each
experiment was repeated multiple times. Variations
between different executions were small and average
measurements are presented. To access the hard-
ware counters, we used ssrun on the Origin 2000 and
PAPI [7] on the Pentium 4 and Itanium 2.

Table 5 and 6 show the average execution costs of
visiting a point along 2D and 3D Hilbert curves at
different levels using the two algorithms. Columns
marked as “Cycles” and “GInst” represent the num-
ber of execution cycles and the number of graduated
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Table 5: Performance comparison for traversing a 2D Hilbert curve.

Butz & Moore SFCGen
Level Origin 2000 Pentium 4 Itanium 2 Origin 2000 Pentium 4 Itanium 2

Cycles GInst Cycles GInst Cycles GInst Cycles GInst Cycles GInst Cycles GInst

6 349 463 1479 996 366 676 39 39 39 39 14 34
8 387 541 1708 1210 418 794 28 40 40 40 13 32
10 436 630 2040 1441 476 922 27 40 39 40 13 32
12 485 712 2314 1655 529 1040 27 40 39 40 13 33
14 532 793 2589 1870 581 1158 27 40 38 40 13 32

Table 6: Performance comparison for traversing a 3D Hilbert curve.

Butz & Moore SFCGen
Level Origin 2000 Pentium 4 Itanium 2 Origin 2000 Pentium 4 Itanium 2

Cycles GInst Cycles GInst Cycles GInst Cycles GInst Cycles GInst Cycles GInst

4 317 415 1323 883 317 617 43 39 36 34 12 24
5 338 476 1519 1028 357 698 28 39 32 35 17 43
6 373 526 1667 1159 392 770 26 38 32 35 10 24
7 402 578 1831 1286 425 842 26 38 32 34 17 43
8 426 617 1990 1415 455 914 25 38 32 34 10 24
9 458 676 2220 1564 494 998 25 38 31 35 17 43

instructions respectively. Compared to Butz’s non-
recursive byte-oriented algorithm, our algorithm uses
only 2% to 9% as many instructions on all platforms.
Overall, our algorithm is faster than Moore’s efficient
implementation of Butz’s byte-oriented algorithm by
a factor of 9 to 68 on 2D cases and a factor of 7 to
72 on 3D cases. We are able to access a point along
a Hilbert curve in 10 to 43 cycles while Butz’s al-
gorithm needs hundreds to thousands cycles. This is
mainly because our table-driven algorithm uses many
fewer instructions with the precomputed information
in the movement specification table. This also leads
to more efficient execution with fewer cycles per grad-
uated instruction on the Intel machines.

Table 7 shows comparisons of execution time for
computing the traversal position of a point along a
2D Hilbert curve from its coordinate position in the
columns under “c2i” and execution time for comput-
ing the coordinates of a point from its traversal posi-
tion along the curve in columns under “i2c”. The top
part of the table show the results from Moore’s imple-
mentation of Butz’s algorithm. Results in the bottom
part of the table are from our indexing algorithm.
The results show that our algorithm performs from
70% to a factor of 11 faster than the byte-oriented al-
gorithm across all three platforms. Our table-based
indexing leads to 60% to about a factor of 5 less grad-
uated instructions and more efficient execution with

the precomputed position information. The less sig-
nificant improvement observed on the Intel Pentium
4 is caused by the relatively higher cost of bit trans-
pose that both algorithms use to retrieve coordinate
information at each level from the original coordi-
nates or to collect the coordinate information from
each level. Overall, we see more improvement in the
“c2i” indexing. The results in Table 5 and Table 7
also tell us that indexing a point along a space-filling
curve is much more expensive than traversing points
on the curve.

We also measured the performance of traversing
and indexing a Morton curve and a Peano curve on
the Origin 2000 and Itanium 2 using our table-based
algorithms. Table 8 shows the average number of
cycles for visiting a point in curve traversal or for in-
dexing a point along a 2D Morton or Peano curve in
the columns under “traversal”, “c2i” or “i2c” respec-
tively. The recursion levels at which we collected re-
sults are lower for the Peano curve since it has higher
refinement factor 3. However the results are fairly
consistent across the levels. The results show that
traversing a Morton curve is more expensive than
traversing the other two space-filling curves because
the diagonal moves in a Morton cuve cause more cal-
culation. On the other hand, indexing a Peano curve
is less efficient mainly because expensive division op-
erations are needed with the refinement factor of 3.
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Table 7: Performance comparison for indexing a 2D Hilbert curve.

Origin 2000 Pentium 4 Itanium 2
c2i i2c c2i i2c c2i i2c

Level Cycles GInst Cycles GInst Cycles GInst Cycles GInst Cycles GInst Cycles GInst
Butz & Moore

6 1236 1040 1068 928 1684 993 1479 996 604 891 388 689
8 1506 1258 1272 1137 1968 1199 1724 1210 765 1092 441 816
10 1680 1473 1477 1366 2120 1377 2048 1441 859 1234 502 953
12 1833 1625 1685 1582 2247 1478 2312 1657 948 1349 557 1080
14 2018 1812 2038 1775 2510 1639 2592 1870 1039 1459 601 1170

SFCGen

6 134 240 146 272 864 607 795 603 136 257 144 321
8 133 268 157 317 1124 749 1005 746 156 296 159 387
10 158 309 180 361 1224 840 1157 884 165 343 174 453
12 170 333 205 408 1293 882 1347 1025 171 373 189 519
14 190 375 225 453 1404 972 1527 1162 179 423 203 579

Table 8: Performance of traversal and indexing with 2D Morton and Peano curves.

Morton Peano
Level Origin 2000 Itanium 2 Level Origin 2000 Itanium 2

traversal c2i i2c traversal c2i i2c traversal c2i i2c traversal c2i i2c

6 56 149 137 46 156 134 4 35 338 600 17 492 774
8 49 143 148 46 177 148 5 29 400 731 16 598 966
10 48 171 175 46 184 170 6 28 470 870 16 706 1160
12 48 168 184 46 188 174 7 28 540 1008 16 810 1351
14 48 201 212 46 194 187 8 28 610 1147 16 916 1544

Traversing and indexing Hilbert curves are both very
efficient.

7 Conclusions

Space-filling curves have been used in many fields for
transforming multi-dimensional problems into one-
dimensional forms. In scientific computing, using
space-filling curves for ordering data or computa-
tion can improve data locality. When applying these
curves in practice, the cost of curve traversal or in-
dexing is important as it can contribute significantly
to overall execution time. For this reason, efficient in-
dexing and traversal algorithms are important. This
paper describes a table-based strategy for efficiently
enumerating coordinates or indexing points along space-
filling curves in two or more dimensions. The higher
performance of our traversal and indexing methods
make them practical to apply at a finer grain such as
for ordering a matrix multiplication computation.
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