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Abstract 
 In this paper, we discuss a reliability-aware monitoring 

and modeling framework which provides near real-time 
system availability/reliability analysis and information for 
High Performance Computing / High End Computing 
(HPC/HEC) runtime systems. Our work aims to address 
issues in existing solutions in which HPC/HEC system 
management only considers performance aspects and leaves 
reliability to a reactive (i.e. addressing issues after they 
happen) or manual recovery approach. Our proposed 
framework dynamically obtains availability information such 
as failure and repair events of the individual nodes and is 
able to model and evaluate system availability for the overall 
and partial HPC system. With near-real-time availability 
evaluation, the framework enables runtime systems such as 
schedulers or resource managers to be aware of more 
accurate system reliability and hence better utilization and 
efficiency of the HPC systems. Lastly, we demonstrate 
usefulness of our approach to a scheduling runtime system 
based on the availability information provided by this 
framework. The failure and analysis model was reconstructed 
from system logs of the Lawrence Livermore National 
Laboratory Advanced Simulation and Computing (ASC) 
machines. The data set was used to understand system 
availability and validate how a scheduler can exploit such 
information to improve the overall completion time for 
parallel jobs in the presence of failures.  
 
1. Introduction 

 
High Performance Computing [1][2], especially in cluster 

form-factor, has become increasingly popular and is a 
significant scientific tool of choice. High availability (HA) on 

the other hand has helped business and mission critical 
environment in providing continuous services. Together, the 
combination of HA and HPC will clearly lead to even more 
benefits for critical computing infrastructure such as shared 
major HEC resource environments. In production 
environments, once a system is in operation, failures can 
happen anytime and may result in a disruption of services 
(service unavailability). Thus, the system must be monitored, 
especially for events of interest that may lead to outages. Any 
failure or recovery events must also be detected and recorded. 
Moreover, a system’s availability should be reevaluated to 
reflect the actual outages and recovery events. Historical 
failure records may also help to identify system weakness, to 
analyze and locate the root cause of system (un)availability, 
which in turn helps improve the availability and performance 
aspects of the computing system. 

In our research, we are interested in analysis of the 
mission-critical HPC system’s Reliability Availability and 
Serviceability (RAS). Our studies focus on how 
reliability/availability will help improve overall performance 
and better HPC system utilization. Furthermore, we propose a 
reliability-aware monitoring and modeling framework that 
provides near real-time system availability/reliability analysis 
and information service for HPC/HEC runtime systems. The 
framework can also be extended to include other important 
reliability techniques such as detailed error classification, 
failure correlation, etc. In addition, the monitoring framework 
provides a platform for enabling the reliability/availability-
aware runtime systems such as the scheduling/queuing or the 
check-pointing/restart mechanism in order to unleash HPC 
system closer to its maximum power. 

The remainder of this paper is organized as follows: 
section 2 lays out the background and related work, section 3 
presents the monitoring framework, section 4 describes the 
measure based on the event log from Lawrence Livermore 



Lab, section 5 demonstrates how the availability information 
acquired from this framework actually affects the job 
scheduling, and section 6 provides for the discussion of future 
work and conclusions. 

 
2. Background 
 

From desktop to supercomputer, availability and reliability 
are key attributes of any modern day computing system. 
Availability s , is the probability of system that is operated 
correctly during a period of time, and is measured by [9]: 

A

TimeElapsedTotal
TimeUpTotalAs =           (1) 

Reliability , is the probability the system is functioning 
at time

( )tR
t  [9]. If we let X  be the random variable representing 

the lifetime of a system, then the system reliability at time t  
can be depicted as [9]: 

( ) ( )tXtR >= Pr           (2) 

Reliability and availability are terms that have often used as 
system fault tolerance attributes. However, they have slightly 
different meanings, namely, availability includes both 
reliability and repair time. In this paper, we interchangeably 
refer to these two terms. 

 In analytical models, failure and repair behaviors are 
assumed to be exponentially distributed, because exponential 
distribution provides concise mathematical expressions 
making the analysis easier. Mean time to fail (MTTF) and 
mean time to repair (MTTR) are two basic parameters 
required to evaluate a system’s availability, and are 
heuristically taken by the analytical modeler based on 
historical data from other similar components or systems. On 
the other hand, system event logs can provide an insight and 
effective means of identifying defects which may lead to 
techniques for improving availability. The system monitoring 
mechanisms were originally developed to meet the needs to 
perform post-mortem analysis and corrective/preventive 
actions to better manage systems. These mechanisms have 
been evolved in time to meet the other needs. System logs are 
the typical records of historical events rather than being the 
result of a predefined plan. Event logs have been used in 
many ways, including long term trend analysis, online 
diagnosis for failure prediction and MTTF estimation. The 
log analysis process is highly dependent upon the quality and 
completeness of the event logs. If the information is 
incomplete or missing, it would be difficult or sometimes 
becomes impossible to interpret the event activities.  

There is a wide variety of research on the analysis of event 
logs. Lin et al [3] analyzed the error log file on file servers to 
demonstrate that the log was composed of at least transient 
and intermittent processes. Wein and Sathaye [4] presented 
their experience with validation of complex computer system 
availability models. Ram et al [5] measured the failure rate in 
widely distributed software. Chillarge et al [6] presented a 
failure rate measurement technique on distributed software, 
based on classifying failure data into “failure windows”. 
Moran et al [7] illustrated the availability monitoring facility 
developed at Digital Equipment International. These 
approaches are similar in performing data analyses; the 

differences in these approaches are the ways they classify 
errors, the correlation, distribution, and aims at different 
models.  

The uniqueness of our approach is that our framework 
automatically performs data analysis, availability modeling 
and stores results in a repository when there are failure/repair 
events detected to provide near-real time availability 
information and inventory of the HPC system. Existing 
approaches either perform the analysis manually or retrieve 
the data from the database (logs) periodically in order to 
generate the analysis report. We envision that a reliability-
aware runtime system can exploit near-real time availability 
information to improve efficiency and thus provide for a 
better HPC resource utilization.  

In our near real-time availability analysis and repository 
(see figure 1), the availability inventory normally starts off 
with a default MTTF and MTTR value either by a manual 
calculation or taking directly from the equipment vendor. 
However, as times goes by, it may be discovered that actual 
failure and repair events are not accurately represented by the 
initial default values. Our technique considers the actual 
failure and repair events and normalizes current availability 
attributes with this actual information. We consider, given a 
set of numbers, representing default reliability information 
and near real-time dataset at time t  is the sample space of an 
experiment, which is the set of all possible outcomes of that 
experiment [16][21]. Let  be the random 
variables from a random sample of size n, from some 
distribution, the sample mean 

nXXX ,,, 21 L
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where the sample variance is given by: 
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It has been proved that X  is the best estimator of the mean 
and  is the best estimator of the variance [20]. S

Goodness-of-Fit test. Let   be the number 
of observations in the random sample, with the sample size 

, and let  be the expected value of type i . If the 

null hypothesis is true, and the sample size is large, then 

the distribution of the statistic 
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approximately a  distribution with 2χ 1−k  degree of 
freedom. It is desired to carry out the test at the significance 
level of 0α , the null hypothesis  should be rejected if Q 
is in the 

0H

01 α−  quantile of the  distribution with 2χ 1−k  
degree of freedom. The test is called the  test of 
goodness-of-fit test [20]. 

2χ

If the sample mean X  is used to calculate the statistic Q , 
then the approximate distribution of Q  when  is true, and 

0H



lies between a  distribution with  degrees of 
freedom, and this leads to the following formula. 

2χ 2−k

We apply the above technique to obtain X , up-to-date 
MTTF and MTTR values.  

 

3. The Reliability-aware Monitoring and 
Modeling Framework 
 
The monitoring framework consists of two major parts, 

namely reliability-aware monitoring and system availability 
modeling and analysis. The reliability-aware monitoring is 
responsible for detecting the system’s failure, performing  
recovery, and maintaining failure history. The system 
availability modeling module provides a near-real-time 
availability evaluation for both node-wise and overall system.  
Currently, we have constructed a proof-of-concept for each 
individual module. However, we plan to integrate our 
framework with the system availability information and 
configuration, and build an availability inventory and 
configuration database with normalization capability for the 
actual node-wise and system’s MTTF and MTTR. Figure 1 
shows the reliability-aware monitoring and modeling 
framework.  

 

 

Figure 1 the reliability-aware monitoring and modeling framework. 

In this framework, the monitoring facility is responsible for 
detections of failures and repair events, and recording these 
events into the system log. The failure data record (FDR) that 
is stripped from the system log file contains only the events 
that are necessary to evaluate a system’s 
availability/reliability. The availability models are used to 
evaluate the system’s availability which is stored in an XML 

file [18]. The system’s log, failure data record and the 
availability model are stored in reliable disk storage. The 
Analysis & Solution modules are responsible for pulling the 
data from the FDR, performing the analysis and feeding the 
result into the availability models. The framework consists of 
three functionalities: (1) detection, which is responsible for 
detecting failure events based on the failure classification, (2) 
logging, which writes the failure events into the system log 
file and the system failure data record, and (3) analysis and 
update, which is responsible for failure analysis and 
normalization of the current system’s availability.  
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Figure 2 shows the flow diagram inside the monitoring and 
analysis framework. Each arc in this diagram is associated 
with a number indicating the flow sequence, and a name 
denoting the action. The monitoring facility (MON) is 
responsible for watching system health. Once a failure or 
repair event is detected, MON writes this information into the 
system log, and invokes the availability update daemon 
(AvailUpd) to update the system’s FDR record. After that, 
the AvailUpd invokes the analysis module, which queries 
the FDR to get the recent failure/repair activity, reevaluates 
the MTTF, MTTR and etc., and then updates both the mean 
time (MT) and the specification of the availability model with 
this new information. Finally, the AvailUpd invokes the 
solution module to solve this availability model. The result of 
availability solution is written back to the availability 
repository on a reliable storage. 

 

 

Figure 2 the reliability-aware runtime flow diagram 

As mentioned earlier, the monitoring system maintains the 
system configuration and MTTF and MTTR information in 
the repository maintaining the availability property for each 
component. Figure 3 shows a snippet for a single instance in 
the availability and mean time records (MT). Each instance in 
the MT record has several  fields: (1) the starting time of the 



instance , (2) the current time , (3) the total elapsing 

time T in hours, which equals to , (3) total number of 
failures (TF) during this period of time, (4) the total 
downtime TDT which represents the total repair time, (5) the 
MTTF, which equals to T/TF, (6) the MTTR, which equals to 
TDT/TF, and (7) the steady state availability of the instance, 
which can be acquired from [9][14]. Among these fields, only 

and TF are recorded for each failure, and TDT is recorded 
for each repair. The rest of the fields are updated based on the 
changes of , TF and TDT. 

0t 1t

01 tt −

1t

1t

  

 

 

Figure 4 Service availability model Figure 3 MT file for a single instance 

4.  Evaluation and Analysis 
 
We analyzed system logs of major HPC computing 

infrastructure from Lawrence Livermore National 
Laboratory. The system log file contains significant system 
events, from years past, collected from four ASC machines, 
namely White, Frost, Ice and Snow. We then performed a 
detailed analysis on these data sets. For the purpose of 
brevity, we present only the analysis result of White. White, 
the largest of among aforementioned systems, is a 512-node, 
16-way symmetric multiprocessor (SMP) parallel computer. 
All nodes are of IBM's RS/6000 POWER3 symmetric 
multiprocessor 64-bit architecture. Each node is a stand-alone  

Figure 4 shows a sample of system and availability model. 
The AvailUpd daemon first evaluates the node-wise and 
system-wise availability, and then updates the availability 
slots in the MT file. Once the availability is calculated, the 
AvailUpd evaluates the availability of the nodes and the 
entire system availability. For more details, please refer to 
[18]. The update facility performs the data analysis, and 
updates the MT file. The failure and repair events are 
assumed to be exponentially distributed, and computes the 
mean, variance and does the goodness-of-fit test. And finally, 
it generates a report and updates the system’s availability. 



 
 

Id Type Subtype Wk-endng 
TDT 
(hr) Sect 

Host 
list 

1914 HW HW-SSA_ADAPTER 7/28/2000 2 whit 265 
1917 HW HW-IO 7/28/2000 33 whit 275 
1931 HW HW-SWITCH 7/28/2000 72 whit 275 
1913 HW HW-SSA_ADAPTER 7/28/2000 2 whit 287 
1968 HW HW-SWITCH 8/4/2000 137 whit 017 
1952 HW HW-CPU 8/4/2000 19 whit 025 
1938 HW HW-CPU 8/4/2000 23 whit 026 
1953 HW HW-MEMORY 8/4/2000 21 whit 067 
1954 HW HW-MEMORY 8/4/2000 20 whit 100 
1949 HW HW-MEMORY 8/4/2000 21 whit 266 
1986 HW HW-CPU 8/11/2000 74 whit 010 
1983 HW HW-MOTHERBOARD 8/11/2000 76 whit 026 
1969 HW HW-OTHER 8/11/2000 48 whit 032 
1970 HW HW-CPU 8/11/2000 21 whit 052 
1971 HW HW-MOTHERBOARD 8/11/2000 20 whit 113 
1985 HW HW-IO 8/11/2000 74 whit 115 
1980 SW SW-COMM_SS 8/11/2000 172 whit 128 
1972 HW HW-CPU 8/11/2000 46 whit 194 

1973 HW HW-MEMORY 8/11/2000 48 whit 211 
1974 HW HW-MEMORY 8/11/2000 144 whit 241 
2005 HW HW-CPU 8/18/2000 144 whit 019 
2002 HW HW-IO 8/18/2000 188 whit 026 

Table 1: Example of failure events in White 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
machine possessing its own memory, operating system (IBX 
AIX), local disk and 16 CPUs. Table 1 lists a sample of 
failure events in ASC White machine during the four year  
period, from 7/21/2000 to 10/1/2004. Table 1 also shows the 
failure id, the type and subtype of the failure, date of the 
failure discovery, total down time (TDT), the system (White) 
and the node affected by this event. Note that the TDT is the 
repair time for a given failure, which includes the response 
time, resolution time and the verification time. We analyzed 
the availability, MTTF and MTTR for each node in the 
system. The MTTF for the a node equals to (total elapsed 
time)/(number of failures). The average MTTF for each node 
in the system is approximately 7168.6 hours.  

The MTTR is the (total down time)/(number of failures), 
which implies that it approximately needs this much time to 
recover from each failure event. The average MTTR for each 
node in the system is approximately 137 hours. The steady 
state availability for each node is 0.98. Figure 5 shows the 
availability density for each node in the White cluster system. 

From Figure 5, we can see that the majority of the 
availability of the each node is above 0.95 with a few of them 
below 0.8. This indicates that, compared to others, some 
nodes manifest outages more. In fact, if the runtime systems 
are not aware of these nodes unreliability, it may result in low 
system total performance, extended application completion or 
failure. For the login nodes, the average MTTF is 1997.5 
hours, and the average MTTR is 112.3 hours. Normally the 

login or service must be very reliable and have a quick repair 
time. Otherwise, it may lead to a single-point-of failure 
phenomenon, with a single failure taking down an entire 
machine or a rather large subset of a machine 
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Figure 5 Availability density of each node in the ASC White 

Figure 6 and Figure 7 show the mean time to failure and 
total down time (TDT) for each node in the cluster white, the 
means are 3293 and 355 hours, and the standard deviation is 
1217 and 56, respectively. In Figure 6, we observe that the 
MTTF for each node varies significantly, namely, the 



smallest MTTF is 230 hours, and the maximum is 5592 
hours. In Figure 7, node downtime density indicates that the 
most of the total down time for each node is around 100 
hours; some failure events cost more time due to a prolonged 
repair process, and thus increase the total average TDT. 
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Figure 6 Node MTTF density (in hours) 
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Figure 7 Node Downtime (in hours) 

 
5. Reliability and Availability Aware 

Scheduling Algorithms 
 
The monitoring framework provides up to date availability 

and reliability information for the overall system and also 
individual nodes. With this information, runtime services 
such as job scheduling can explore such information in order 
to improve an overall performance and system utilization. In 
this section, we present an experiment to demonstrate the 
affect of considering reliability and availability parameters in 
scheduling.  

We have considered the system events of cluster White to 
reconstruct situations in order to validate an effectiveness of  
scheduling algorithms that use the availability information to 
schedule parallel jobs. The parameters MTTF, MTTR, and 
the elapsed time obtained from the information service are 
dynamically updated through the monitoring system. There 
are various important parameters that are significant in 
developing an effective scheduling algorithm such as job 
completion time, performance, throughput, utilization, 

reliability, safety, queuing time etc. Here we consider 
reliability as an important attribute for a scheduling algorithm 
and show how the job completion time is affected when 
choosing such an algorithm, since the reliability information 
can be acquired from the MTTF provided from the 
monitoring system. 

Figure 8 illustrates a Gantt chart showing the effect of 
completion time for MPI jobs, in the presence of node 
failures. As the number of nodes increases, the probability 
that one or more of the nodes failing also increases, thus 
affecting the overall job completion time. In the case of 
parallel programs, the failure will impact the jobs running on 
all the systems. The MTTF for n nodes is given by the 
following equation: 

 

 ( )
λ

λ
n

nMTTF 1, =          (6) 

 

 

Figure 8 Completion time for a parallel job impacted by node 
failures 

In a very large scale system, availability (or reliability) of 
the computing nodes becomes a very important factor in 
scheduling parallel jobs (such as MPI), because the job must 
be restarted and/or reallocated to a different set of nodes 
when failures occur. In this case, the completion time of the 
job will be affected in the event of failure, as shown in the 
Gantt chart above.  

According to Amdahl’s Law, the maximum speedup 
achievable is limited by the serial part of the program 
[22][19] The “speedup” of a parallel program is defined to be 
the ratio of the rate a job running on N processors to the rate 
at which the job is executed on one node. The speedup S(N) 
is given by  

)1(

1)(
p

n
p

nS
−+

=           (7) 

 
where p is the fraction of code that can be made parallel 

(therefore, 1-p is the code that has to be executed 
sequentially) and n is the number of nodes. The expected 
execution time on n nodes T(n) is given by 

)(
)1()(

nS
TnT =             (8) 



In an MPI program the availability of n nodes participating 
in the program is given by  

nAnA =)(           (9) 
where n is the number of computing nodes needed for the 
MPI program. 
 
A job completion time can be described as  

 
Ct = T(n) + T(f)                     (10) 

 
Where T(n) is the expected completion time and T(f) is the 

total time spent on the nodes that have failed to run the job. 
The fraction of code that is made parallel, p, is assumed to be 
0.891 hereafter. 
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Figure 9: Numbers of nodes vs. system MTTF in the k of n 

reliability model (MPI program) 
 

Node-wise MTTF and the number of cooperating nodes 
affect the total system availability and reliability as well as a 
completion time (see eq.6-10). For a given node-wise failure 
rate (λ), the total system MTTF decreases (i.e. the frequency 
of failure increases), as the number of nodes on which the job 
runs increases. At some points, scalability will approach a 
breakeven point where a long running job will not be able to 
finish due to its completion time being longer than the total 
system MTTF. Figure 9 shows how the MTTF varies with the 
increase in the number of nodes for three different failure 
rates. This phenomenon also elicits a conclusion that runtime 
systems, such as a scheduler aware of system reliability 
(MTTF), will benefit from MTTF information, especially 
more accurate MTTF information from our near real-time 
modeling approach.  
 
6. Conclusion and Future Work 

 
In this paper, we have presented the reliability-aware 

framework which is responsible for monitoring system health 
and automatically performs near-real-time system availability 
analysis. This framework not only is an important stepping 
stone to enable runtime systems to be aware of resource 
availability, but also ensures the more accurate result with a 
near real-time analysis approach, hence making better 
decisions in unleashing HPC/HEC power. We analyzed the 
actual data based on real-world production system logs from 
the Lawrence Livermore ASC machines and fed the analysis 
results to validate our approach. We have also demonstrated 

that it is possible to improve runtime performance via 
reliability/availability information. 

Several improvements are considered to be included in the 
future work. The first enhancement is an event monitoring 
classification technique to further refine, identify and predict 
failure events. Currently the system’s availability model is 
derived from crude model instances; for example, if the 
monitoring module does not receive response from a node, 
the node is considered as failed. This deficiency can be 
extended by monitoring and modeling more detailed events 
for each node, probing critical services or applications of 
interest, and to better estimates not only hardware but also 
application reliability/availability, as well as identifying the 
critical problems. Furthermore, other analysis techniques can 
be included, such as Weibull distribution [9] analysis, the 
Chapman-Smirnov test [16] among others, to study for more 
accurate models. Third, non-homogeneous Markov model 
and semi-Markov model [9][17] techniques should also be 
investigated to represent system behavior. 

Since there are situations where a job will never complete 
due to relatively short MTTF, our future work will consider 
reliability-aware checkpoint/restart techniques that aim to 
derive an optimal interval to save application context based 
on the runtime system MTTF. Furthermore, we plan to 
investigate a checkpoint and restart time as one repair events 
and thus its time factor (penalty) will influent our total system 
availability model. 
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