
Near-Real-time Availability Monitoring and Modeling
for HPC/HEC runtime systems

Hertong Song1, Chokchai Box Leangsuksun , Narasimha Raju Gottumukkala , 1 1

Raja Nassar1, Stephen L. Scott2, Andy Yoo3

1eXtreme Computing Research
Group

College of Engineering & Science
Louisiana Tech University

Ruston, LA 71270, USA
{hso001, box,

nrg003,nassar}@latech.edu

2Network and Cluster Computing
Group

Oak Ridge National laboratory
Oak Ridge, TN 37830, USA

3Center for Applied Scientific
Computing

Lawrence Livermore National
Laboratory

Livermore, CA 94551, USA
ayoo@llnl.gov

1 The work of Song, Leangsuksun, and Gottumukkala is supported by DOE fastOS program, Grant # DE-FG02-04ER4614.
2 Scott’s research supported by the Mathematics, Information and Computational Sciences Office, Office of Advanced Scientific Computing
Research, Office of Science, U. S. Department of Energy, under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.
3 The work of Yoo was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence
Livermore National Laboratory under Contract No. W-7405-Eng-48. Document UCRL-JC-147996.

Abstract
 In this paper, we discuss a reliability-aware monitoring

and modeling framework which provides near real-time
system availability/reliability analysis and information for
High Performance Computing / High End Computing
(HPC/HEC) runtime systems. Our work aims to address
issues in existing solutions in which HPC/HEC system
management only considers performance aspects and leaves
reliability to a reactive (i.e. addressing issues after they
happen) or manual recovery approach. Our proposed
framework dynamically obtains availability information such
as failure and repair events of the individual nodes and is
able to model and evaluate system availability for the overall
and partial HPC system. With near-real-time availability
evaluation, the framework enables runtime systems such as
schedulers or resource managers to be aware of more
accurate system reliability and hence better utilization and
efficiency of the HPC systems. Lastly, we demonstrate
usefulness of our approach to a scheduling runtime system
based on the availability information provided by this
framework. The failure and analysis model was reconstructed
from system logs of the Lawrence Livermore National
Laboratory Advanced Simulation and Computing (ASC)
machines. The data set was used to understand system
availability and validate how a scheduler can exploit such
information to improve the overall completion time for
parallel jobs in the presence of failures.

1. Introduction

High Performance Computing [1][2], especially in cluster

form-factor, has become increasingly popular and is a
significant scientific tool of choice. High availability (HA) on

the other hand has helped business and mission critical
environment in providing continuous services. Together, the
combination of HA and HPC will clearly lead to even more
benefits for critical computing infrastructure such as shared
major HEC resource environments. In production
environments, once a system is in operation, failures can
happen anytime and may result in a disruption of services
(service unavailability). Thus, the system must be monitored,
especially for events of interest that may lead to outages. Any
failure or recovery events must also be detected and recorded.
Moreover, a system’s availability should be reevaluated to
reflect the actual outages and recovery events. Historical
failure records may also help to identify system weakness, to
analyze and locate the root cause of system (un)availability,
which in turn helps improve the availability and performance
aspects of the computing system.

In our research, we are interested in analysis of the
mission-critical HPC system’s Reliability Availability and
Serviceability (RAS). Our studies focus on how
reliability/availability will help improve overall performance
and better HPC system utilization. Furthermore, we propose a
reliability-aware monitoring and modeling framework that
provides near real-time system availability/reliability analysis
and information service for HPC/HEC runtime systems. The
framework can also be extended to include other important
reliability techniques such as detailed error classification,
failure correlation, etc. In addition, the monitoring framework
provides a platform for enabling the reliability/availability-
aware runtime systems such as the scheduling/queuing or the
check-pointing/restart mechanism in order to unleash HPC
system closer to its maximum power.

The remainder of this paper is organized as follows:
section 2 lays out the background and related work, section 3
presents the monitoring framework, section 4 describes the
measure based on the event log from Lawrence Livermore

Lab, section 5 demonstrates how the availability information
acquired from this framework actually affects the job
scheduling, and section 6 provides for the discussion of future
work and conclusions.

2. Background

From desktop to supercomputer, availability and reliability
are key attributes of any modern day computing system.
Availability s , is the probability of system that is operated
correctly during a period of time, and is measured by [9]:

A

TimeElapsedTotal
TimeUpTotalAs = (1)

Reliability , is the probability the system is functioning
at time

()tR
t [9]. If we let X be the random variable representing

the lifetime of a system, then the system reliability at time t
can be depicted as [9]:

() ()tXtR >= Pr (2)

Reliability and availability are terms that have often used as
system fault tolerance attributes. However, they have slightly
different meanings, namely, availability includes both
reliability and repair time. In this paper, we interchangeably
refer to these two terms.

 In analytical models, failure and repair behaviors are
assumed to be exponentially distributed, because exponential
distribution provides concise mathematical expressions
making the analysis easier. Mean time to fail (MTTF) and
mean time to repair (MTTR) are two basic parameters
required to evaluate a system’s availability, and are
heuristically taken by the analytical modeler based on
historical data from other similar components or systems. On
the other hand, system event logs can provide an insight and
effective means of identifying defects which may lead to
techniques for improving availability. The system monitoring
mechanisms were originally developed to meet the needs to
perform post-mortem analysis and corrective/preventive
actions to better manage systems. These mechanisms have
been evolved in time to meet the other needs. System logs are
the typical records of historical events rather than being the
result of a predefined plan. Event logs have been used in
many ways, including long term trend analysis, online
diagnosis for failure prediction and MTTF estimation. The
log analysis process is highly dependent upon the quality and
completeness of the event logs. If the information is
incomplete or missing, it would be difficult or sometimes
becomes impossible to interpret the event activities.

There is a wide variety of research on the analysis of event
logs. Lin et al [3] analyzed the error log file on file servers to
demonstrate that the log was composed of at least transient
and intermittent processes. Wein and Sathaye [4] presented
their experience with validation of complex computer system
availability models. Ram et al [5] measured the failure rate in
widely distributed software. Chillarge et al [6] presented a
failure rate measurement technique on distributed software,
based on classifying failure data into “failure windows”.
Moran et al [7] illustrated the availability monitoring facility
developed at Digital Equipment International. These
approaches are similar in performing data analyses; the

differences in these approaches are the ways they classify
errors, the correlation, distribution, and aims at different
models.

The uniqueness of our approach is that our framework
automatically performs data analysis, availability modeling
and stores results in a repository when there are failure/repair
events detected to provide near-real time availability
information and inventory of the HPC system. Existing
approaches either perform the analysis manually or retrieve
the data from the database (logs) periodically in order to
generate the analysis report. We envision that a reliability-
aware runtime system can exploit near-real time availability
information to improve efficiency and thus provide for a
better HPC resource utilization.

In our near real-time availability analysis and repository
(see figure 1), the availability inventory normally starts off
with a default MTTF and MTTR value either by a manual
calculation or taking directly from the equipment vendor.
However, as times goes by, it may be discovered that actual
failure and repair events are not accurately represented by the
initial default values. Our technique considers the actual
failure and repair events and normalizes current availability
attributes with this actual information. We consider, given a
set of numbers, representing default reliability information
and near real-time dataset at time t is the sample space of an
experiment, which is the set of all possible outcomes of that
experiment [16][21]. Let be the random
variables from a random sample of size n, from some
distribution, the sample mean

nXXX ,,, 21 L

X is given by:

∑
=

=
n

i
iX

n
X

1

1 (3)

where the sample variance is given by:

()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−

−
=−

−
= ∑∑∑

===

2

11

2

1

2 1
1

1
1

1 n

i
i

n

i
i

n

i
i X

n
X

n
XX

n
S (4)

It has been proved that X is the best estimator of the mean
and is the best estimator of the variance [20]. S

Goodness-of-Fit test. Let be the number
of observations in the random sample, with the sample size

, and let be the expected value of type i . If the

null hypothesis is true, and the sample size is large, then

the distribution of the statistic

iN ki ,,2,1 L=

∑
=

=
k

i
iNN

1
iE

0H
()∑

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=

k

i i

ii

E
EN

1

2

Q will be

approximately a distribution with 2χ 1−k degree of
freedom. It is desired to carry out the test at the significance
level of 0α , the null hypothesis should be rejected if Q
is in the

0H

01 α− quantile of the distribution with 2χ 1−k
degree of freedom. The test is called the test of
goodness-of-fit test [20].

2χ

If the sample mean X is used to calculate the statistic Q ,
then the approximate distribution of Q when is true, and

0H

lies between a distribution with degrees of
freedom, and this leads to the following formula.

2χ 2−k

We apply the above technique to obtain X , up-to-date
MTTF and MTTR values.

3. The Reliability-aware Monitoring and
Modeling Framework

The monitoring framework consists of two major parts,

namely reliability-aware monitoring and system availability
modeling and analysis. The reliability-aware monitoring is
responsible for detecting the system’s failure, performing
recovery, and maintaining failure history. The system
availability modeling module provides a near-real-time
availability evaluation for both node-wise and overall system.
Currently, we have constructed a proof-of-concept for each
individual module. However, we plan to integrate our
framework with the system availability information and
configuration, and build an availability inventory and
configuration database with normalization capability for the
actual node-wise and system’s MTTF and MTTR. Figure 1
shows the reliability-aware monitoring and modeling
framework.

Figure 1 the reliability-aware monitoring and modeling framework.

In this framework, the monitoring facility is responsible for
detections of failures and repair events, and recording these
events into the system log. The failure data record (FDR) that
is stripped from the system log file contains only the events
that are necessary to evaluate a system’s
availability/reliability. The availability models are used to
evaluate the system’s availability which is stored in an XML

file [18]. The system’s log, failure data record and the
availability model are stored in reliable disk storage. The
Analysis & Solution modules are responsible for pulling the
data from the FDR, performing the analysis and feeding the
result into the availability models. The framework consists of
three functionalities: (1) detection, which is responsible for
detecting failure events based on the failure classification, (2)
logging, which writes the failure events into the system log
file and the system failure data record, and (3) analysis and
update, which is responsible for failure analysis and
normalization of the current system’s availability.

() 2
1,2

1

2
2

0αχχ −−
=

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
= ∑ k

k

i i

ii

E
EN (5)

Figure 2 shows the flow diagram inside the monitoring and
analysis framework. Each arc in this diagram is associated
with a number indicating the flow sequence, and a name
denoting the action. The monitoring facility (MON) is
responsible for watching system health. Once a failure or
repair event is detected, MON writes this information into the
system log, and invokes the availability update daemon
(AvailUpd) to update the system’s FDR record. After that,
the AvailUpd invokes the analysis module, which queries
the FDR to get the recent failure/repair activity, reevaluates
the MTTF, MTTR and etc., and then updates both the mean
time (MT) and the specification of the availability model with
this new information. Finally, the AvailUpd invokes the
solution module to solve this availability model. The result of
availability solution is written back to the availability
repository on a reliable storage.

Figure 2 the reliability-aware runtime flow diagram

As mentioned earlier, the monitoring system maintains the
system configuration and MTTF and MTTR information in
the repository maintaining the availability property for each
component. Figure 3 shows a snippet for a single instance in
the availability and mean time records (MT). Each instance in
the MT record has several fields: (1) the starting time of the

instance , (2) the current time , (3) the total elapsing

time T in hours, which equals to , (3) total number of
failures (TF) during this period of time, (4) the total
downtime TDT which represents the total repair time, (5) the
MTTF, which equals to T/TF, (6) the MTTR, which equals to
TDT/TF, and (7) the steady state availability of the instance,
which can be acquired from [9][14]. Among these fields, only

and TF are recorded for each failure, and TDT is recorded
for each repair. The rest of the fields are updated based on the
changes of , TF and TDT.

0t 1t

01 tt −

1t

1t

Figure 4 Service availability model Figure 3 MT file for a single instance

4. Evaluation and Analysis

We analyzed system logs of major HPC computing

infrastructure from Lawrence Livermore National
Laboratory. The system log file contains significant system
events, from years past, collected from four ASC machines,
namely White, Frost, Ice and Snow. We then performed a
detailed analysis on these data sets. For the purpose of
brevity, we present only the analysis result of White. White,
the largest of among aforementioned systems, is a 512-node,
16-way symmetric multiprocessor (SMP) parallel computer.
All nodes are of IBM's RS/6000 POWER3 symmetric
multiprocessor 64-bit architecture. Each node is a stand-alone

Figure 4 shows a sample of system and availability model.
The AvailUpd daemon first evaluates the node-wise and
system-wise availability, and then updates the availability
slots in the MT file. Once the availability is calculated, the
AvailUpd evaluates the availability of the nodes and the
entire system availability. For more details, please refer to
[18]. The update facility performs the data analysis, and
updates the MT file. The failure and repair events are
assumed to be exponentially distributed, and computes the
mean, variance and does the goodness-of-fit test. And finally,
it generates a report and updates the system’s availability.

Id Type Subtype Wk-endng
TDT
(hr) Sect

Host
list

1914 HW HW-SSA_ADAPTER 7/28/2000 2 whit 265
1917 HW HW-IO 7/28/2000 33 whit 275
1931 HW HW-SWITCH 7/28/2000 72 whit 275
1913 HW HW-SSA_ADAPTER 7/28/2000 2 whit 287
1968 HW HW-SWITCH 8/4/2000 137 whit 017
1952 HW HW-CPU 8/4/2000 19 whit 025
1938 HW HW-CPU 8/4/2000 23 whit 026
1953 HW HW-MEMORY 8/4/2000 21 whit 067
1954 HW HW-MEMORY 8/4/2000 20 whit 100
1949 HW HW-MEMORY 8/4/2000 21 whit 266
1986 HW HW-CPU 8/11/2000 74 whit 010
1983 HW HW-MOTHERBOARD 8/11/2000 76 whit 026
1969 HW HW-OTHER 8/11/2000 48 whit 032
1970 HW HW-CPU 8/11/2000 21 whit 052
1971 HW HW-MOTHERBOARD 8/11/2000 20 whit 113
1985 HW HW-IO 8/11/2000 74 whit 115
1980 SW SW-COMM_SS 8/11/2000 172 whit 128
1972 HW HW-CPU 8/11/2000 46 whit 194

1973 HW HW-MEMORY 8/11/2000 48 whit 211
1974 HW HW-MEMORY 8/11/2000 144 whit 241
2005 HW HW-CPU 8/18/2000 144 whit 019
2002 HW HW-IO 8/18/2000 188 whit 026

Table 1: Example of failure events in White

machine possessing its own memory, operating system (IBX
AIX), local disk and 16 CPUs. Table 1 lists a sample of
failure events in ASC White machine during the four year
period, from 7/21/2000 to 10/1/2004. Table 1 also shows the
failure id, the type and subtype of the failure, date of the
failure discovery, total down time (TDT), the system (White)
and the node affected by this event. Note that the TDT is the
repair time for a given failure, which includes the response
time, resolution time and the verification time. We analyzed
the availability, MTTF and MTTR for each node in the
system. The MTTF for the a node equals to (total elapsed
time)/(number of failures). The average MTTF for each node
in the system is approximately 7168.6 hours.

The MTTR is the (total down time)/(number of failures),
which implies that it approximately needs this much time to
recover from each failure event. The average MTTR for each
node in the system is approximately 137 hours. The steady
state availability for each node is 0.98. Figure 5 shows the
availability density for each node in the White cluster system.

From Figure 5, we can see that the majority of the
availability of the each node is above 0.95 with a few of them
below 0.8. This indicates that, compared to others, some
nodes manifest outages more. In fact, if the runtime systems
are not aware of these nodes unreliability, it may result in low
system total performance, extended application completion or
failure. For the login nodes, the average MTTF is 1997.5
hours, and the average MTTR is 112.3 hours. Normally the

login or service must be very reliable and have a quick repair
time. Otherwise, it may lead to a single-point-of failure
phenomenon, with a single failure taking down an entire
machine or a rather large subset of a machine

Availability for White

0

0.2

0.4

0.6

0.8

1

1.2

000 200 400 600

Nodes index

A

Availability
Average=0.9872
STDEV=0.03292

Figure 5 Availability density of each node in the ASC White

Figure 6 and Figure 7 show the mean time to failure and
total down time (TDT) for each node in the cluster white, the
means are 3293 and 355 hours, and the standard deviation is
1217 and 56, respectively. In Figure 6, we observe that the
MTTF for each node varies significantly, namely, the

smallest MTTF is 230 hours, and the maximum is 5592
hours. In Figure 7, node downtime density indicates that the
most of the total down time for each node is around 100
hours; some failure events cost more time due to a prolonged
repair process, and thus increase the total average TDT.

Nodes MTTF for White

0

1000

2000

3000

4000

5000

6000

1 51 101 151 201 251 301 351 401 451

Node index

M
TT

F

 Mean=3923
 STDEV=1217

Figure 6 Node MTTF density (in hours)

Nodes TDT for White

0

2000

4000

6000

8000

10000

1 51 101 151 201 251 301 351 401 451

Node index

TD
T Mean=355

STDEV=56

Figure 7 Node Downtime (in hours)

5. Reliability and Availability Aware

Scheduling Algorithms

The monitoring framework provides up to date availability

and reliability information for the overall system and also
individual nodes. With this information, runtime services
such as job scheduling can explore such information in order
to improve an overall performance and system utilization. In
this section, we present an experiment to demonstrate the
affect of considering reliability and availability parameters in
scheduling.

We have considered the system events of cluster White to
reconstruct situations in order to validate an effectiveness of
scheduling algorithms that use the availability information to
schedule parallel jobs. The parameters MTTF, MTTR, and
the elapsed time obtained from the information service are
dynamically updated through the monitoring system. There
are various important parameters that are significant in
developing an effective scheduling algorithm such as job
completion time, performance, throughput, utilization,

reliability, safety, queuing time etc. Here we consider
reliability as an important attribute for a scheduling algorithm
and show how the job completion time is affected when
choosing such an algorithm, since the reliability information
can be acquired from the MTTF provided from the
monitoring system.

Figure 8 illustrates a Gantt chart showing the effect of
completion time for MPI jobs, in the presence of node
failures. As the number of nodes increases, the probability
that one or more of the nodes failing also increases, thus
affecting the overall job completion time. In the case of
parallel programs, the failure will impact the jobs running on
all the systems. The MTTF for n nodes is given by the
following equation:

 ()
λ

λ
n

nMTTF 1, = (6)

Figure 8 Completion time for a parallel job impacted by node
failures

In a very large scale system, availability (or reliability) of
the computing nodes becomes a very important factor in
scheduling parallel jobs (such as MPI), because the job must
be restarted and/or reallocated to a different set of nodes
when failures occur. In this case, the completion time of the
job will be affected in the event of failure, as shown in the
Gantt chart above.

According to Amdahl’s Law, the maximum speedup
achievable is limited by the serial part of the program
[22][19] The “speedup” of a parallel program is defined to be
the ratio of the rate a job running on N processors to the rate
at which the job is executed on one node. The speedup S(N)
is given by

)1(

1)(
p

n
p

nS
−+

= (7)

where p is the fraction of code that can be made parallel

(therefore, 1-p is the code that has to be executed
sequentially) and n is the number of nodes. The expected
execution time on n nodes T(n) is given by

)(
)1()(

nS
TnT = (8)

In an MPI program the availability of n nodes participating
in the program is given by

nAnA =)((9)
where n is the number of computing nodes needed for the
MPI program.

A job completion time can be described as

Ct = T(n) + T(f) (10)

Where T(n) is the expected completion time and T(f) is the

total time spent on the nodes that have failed to run the job.
The fraction of code that is made parallel, p, is assumed to be
0.891 hereafter.

MTTF vs No of nodes

0.001

0.01

0.1

1

10

100

1000

10000

1 20 60 160 640

No of Nodes

M
TT

F
(In

 H
ou

rs
) lambda=0.002

lambda=0.004

lambda=0.0005

Figure 9: Numbers of nodes vs. system MTTF in the k of n

reliability model (MPI program)

Node-wise MTTF and the number of cooperating nodes
affect the total system availability and reliability as well as a
completion time (see eq.6-10). For a given node-wise failure
rate (λ), the total system MTTF decreases (i.e. the frequency
of failure increases), as the number of nodes on which the job
runs increases. At some points, scalability will approach a
breakeven point where a long running job will not be able to
finish due to its completion time being longer than the total
system MTTF. Figure 9 shows how the MTTF varies with the
increase in the number of nodes for three different failure
rates. This phenomenon also elicits a conclusion that runtime
systems, such as a scheduler aware of system reliability
(MTTF), will benefit from MTTF information, especially
more accurate MTTF information from our near real-time
modeling approach.

6. Conclusion and Future Work

In this paper, we have presented the reliability-aware

framework which is responsible for monitoring system health
and automatically performs near-real-time system availability
analysis. This framework not only is an important stepping
stone to enable runtime systems to be aware of resource
availability, but also ensures the more accurate result with a
near real-time analysis approach, hence making better
decisions in unleashing HPC/HEC power. We analyzed the
actual data based on real-world production system logs from
the Lawrence Livermore ASC machines and fed the analysis
results to validate our approach. We have also demonstrated

that it is possible to improve runtime performance via
reliability/availability information.

Several improvements are considered to be included in the
future work. The first enhancement is an event monitoring
classification technique to further refine, identify and predict
failure events. Currently the system’s availability model is
derived from crude model instances; for example, if the
monitoring module does not receive response from a node,
the node is considered as failed. This deficiency can be
extended by monitoring and modeling more detailed events
for each node, probing critical services or applications of
interest, and to better estimates not only hardware but also
application reliability/availability, as well as identifying the
critical problems. Furthermore, other analysis techniques can
be included, such as Weibull distribution [9] analysis, the
Chapman-Smirnov test [16] among others, to study for more
accurate models. Third, non-homogeneous Markov model
and semi-Markov model [9][17] techniques should also be
investigated to represent system behavior.

Since there are situations where a job will never complete
due to relatively short MTTF, our future work will consider
reliability-aware checkpoint/restart techniques that aim to
derive an optimal interval to save application context based
on the runtime system MTTF. Furthermore, we plan to
investigate a checkpoint and restart time as one repair events
and thus its time factor (penalty) will influent our total system
availability model.

References

[1] D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband, U.
A. Ranawak, and C. V. Packer. “Beowulf: A Parallel
Workstation for Scientific Computation,” Proceedings of
International Conference on Parallel Processing, 1995.

[2] T. Naughton, S. L. Scott, Y. Fang, P. Pfeiffer, B.

Ligneris and C. Leangsuksun, “The OSCAR Toolkit:
Current and future developments,” Dell Power Solutions,
Nov. 2001.

[3] C. Leangsuksun, L. Shen, T. Liu, H. Song, and S. L.

Scott, “Availability Prediction and Modeling of High
Availability OSCAR Cluster,” IEEE International
Conference on Cluster Computing, December 1-4, 2003,
Hong Kong.

[4] T. Y. Lin and D. P. Siewiorek, “Error log analysis:

statistical modeling and Heuristic trend analysis,” IEEE
Trans. on Rel. vol. 39, no. 4, Oct. 1990, pp. 419-432.

[5] A. Wein and A. Sathaye, “Validating complex computer

system availability models,” IEEE Trans. on Rel., vol.
39, no. 4, Oct. 1990, pp.468-479.

[6] D. Tong and K. Iyer, “Dependability measurement and

modeling of a multicomputer system,” IEEE Trans. on
Computers, vol. 42, no. 1, Jan, 1993, pp. 62-75.

[7] R. Chillarege, S. Biyani and J. Rosenthal, “Measurement

of failure rate in widely distributed software,” Proc. 25th
International Symposium on Fault-Tolerant Computing
(FTCS 25), Sendai, Japan, 1996.

[8] P. Moran, P. Gaffney, J. Melody, M. Condon and M.

Hayden, “System Availability Monitoring,” IEEE
Transactions on Reliability, vol. 39, no. 4, Oct. 1990, pp.
480-485.

[9] M. Lanus, L. Yin and K. S. Trivedi, “Hierarchical
Composition and Aggregation of State-Based
Availability and Performability Models,” IEEE Trans. on
Reliability, vol. 52, no.1, March, 2003, pp. 44-52.

[10] Kishor S. Trivedi, Probability and Statistics with

Reliability, Queuing, and Computer Science
Applications. John Wiley & Sons, Inc. New York, 2002.

[11] J. Muppala, M. Malhotra, and K. S. Trivedi, “Markov

Dependability Models of Complex Systems: Analysis
Techniques,” Reliability and Maintenance of Complex
Systems, S. Ozekici (ed.), pp. 442-486, Springer-Verlag,
Berlin, 1996.

[12] O.C. Ibe, R.C Howe and K.S. Trivedi, “Approximate

availability analysis of VAXcluster systems,” IEEE
Trans. on Reliability, vol. 38, no.1, April, 1989, pp. 146-
152.

[13] J. T. Blake and K. S. Trivedi, “Reliability Analysis of

Interconnection Networks Using Hierarchical
Composition,” IEEE Trans. on Reliability, vol. 38, no.1,
pp. 111-119, April, 1989.

[14] R. A. Sahner and K. S. Trivedi, “A hierarchical,

combinatorial-Markov model of solving complex
reliability models,” Proceedings of 1986 ACM Fall joint
computer conference, Dallas, Texas, United States, pp.
817 – 825.

[15] S. V. Amari, H. Pham, and Glenn Dill, "Optimal Design

of k-out-of-n:G Subsystems Subjected to Imperfect
Fault-Coverage", IEEE Trans on Reliability, vol. 53, no.
4, December 2004.

[16] M. H. DeGroot and M. J. Schervish, Probability and

statistics, 3rd edition, Addition-Wesley, 2002.

[17] Pierre Bremaud, Markov Chains: Gibbs Fields, Monte
Carlo Simulation, and Queues. Springer, 1999.

[18] H. Song, C. Leangsuksun, R. Nassar, and Y. Liu

“Availability Specification and Evaluation of HA-
OSCAR Servers – An Object-Oriented Approach,”
Appearing in The 3rd International Conference on
Computing, Communications and Control Technologies,
July 24-27, Austin, Texas, USA. 2005

[19] Jeff Fier, “Origin™ 2001 and Onyx2® Performance

Tuning and Optimization,” Document Number 007-
3430-001, Silicon Graphics.

[20] R. V. Hogg and A. T. Craig, Introduction to

Mathematical Statistics, 4th Edition, Macmillan
Publishing Co., Inc. 1978.

[21] J. L. Devore, Probability and statistics, 5th edition,
Brook/Core, 1999.

[22] K., Hwang, 1993. Advanced Computer Architecture:

Parallelism, Scalability, Programmability. McGraw-Hill,
Inc., New York, NY.

	Home
	TOC
	Go Back

