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ABSTRACT

The gap between processor and memory speeds has been
growing with each new generation of microprocessors. As
a result, memory hierarchy response has become a critical
factor limiting application performance. For this reason,
we have been working to model the impact of memory ac-
cess latency on program performance. We build upon our
prior work on constructing machine-independent characteri-
zations of application behavior [9] by improving instruction-
level modeling of the structure and scaling of data access
patterns. This paper makes two contributions. First, it de-
scribes static analysis techniques that help us build accurate
reference-level characterizations of memory reuse patterns
in the presence of complex interactions between loop un-
rolling and multi-word memory blocks. Second, it describes
a strategy for combining memory hierarchy response charac-
terizations suitable for predicting behavior for fully associa-
tive caches with a probabilistic technique that enables us to
predict misses for set-associative caches. We validate our ap-
proach by comparing our predictions (at loop, routine and
program level) against measurements using hardware per-
formance counters for several benchmarks on two platforms
with different memory hierarchy characteristics over a large
range of problem sizes.
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1. INTRODUCTION

For more than a decade, memory latency measured in
terms of processor cycles has increased with each new gen-
eration of processors. For data-intensive programs, it is
widely accepted that memory hierarchy latency and band-
width are the factors most limiting node performance on
microprocessor-based systems. To alleviate this problem,
modern architectures include one or more levels of cache be-
tween the CPU and the main memory to boost available
data bandwidth and help hide memory latency. However,
caches are effective only if an application exhibits tempo-
ral or spatial data reuse. Therefore, characterizing an ap-

plication’s memory access patterns is important for under-
standing its performance and identifying opportunities for
optimization.

Predicting application behavior on a different architecture
for problem sizes not studied is difficult. Successful cross-
architecture prediction requires an architecture-independent
characterization of application behavior. Simple models that
extrapolate from hardware performance counter measure-
ments (e.g. the number of cache or TLB misses) on a partic-
ular machine cannot accurately predict application behav-
ior on other architectures. Moreover, since an application’s
cache miss rate tends to grow in steps rather than smoothly
with the size of the working set, extrapolations of hardware
counter measurements should be attempted over only a lim-
ited range even on the same architecture.

In this paper, we expand upon our earlier work on cross-
architecture prediction of application performance [9] with
a focus on our techniques for predicting memory hierarchy
response. We present a method for characterizing an ap-
plication’s memory access patterns and a modeling strategy
that enables predictions of cache miss counts at the instruc-
tion level for different architectures and problem sizes.

New contributions of our work include static binary anal-
ysis techniques for symbolically characterizing memory ref-
erence access patterns, and a strategy for combining mem-
ory hierarchy response models that assume full associativity
with a probabilistic technique that enables cache miss pre-
dictions for set-associative caches. We present a set of ex-
periments to validate our cache and TLB miss predictions
at loop, routine and program level. Our experiments com-
pare measured and predicted memory hierarchy responses
of several applications on two different architectures over a
large range of problem sizes.

To model the memory hierarchy behavior of an applica-
tion, we characterize the memory reuse distances' seen by
each reference in the program. Memory reuse distance is a
measure of the number of unique memory blocks accessed
between a pair of accesses to the same block. Characteriz-
ing memory access behavior in this way for programs has
two important advantages. First, data reuse distance is an
application characteristic that is independent of target ar-
chitecture. Second, reuse distance is a scalable measure of
data reuse, which is the main determinant in cache per-

"Memory reuse distance is also known as LRU stack dis-
tance.



formance. However, there is one exception to the claim of
total architecture independence. To capture spatial reuse in
cache lines, we must collect reuse information with a mem-
ory block size equal to the size of the cache line on the target
architecture. We will address this limitation again in Sec-
tion 3. In addition, our reuse distance based models capture
the memory access pattern of an application, therefore it is
only sensible that they are not portable across high level
loop optimizations (HLO) such as tiling, loop interchange,
unroll & jam, that change the application’s memory access
pattern.

The rest of this paper is organized as follows. Section 2
presents static analysis that we use to guide both program
instrumentation and modeling. Section 3 describes our in-
frastructure for collecting memory reuse distance (MRD)
histograms from instrumented programs. Section 4 explains
our algorithm for synthesizing scalable models from the col-
lected data. Section 5 shows how we predict the number of
cache misses for fully-associative or set-associative caches.
Section 6 presents the results of using our methodology to
predict cache and TLB miss counts at loop level for sev-
eral NAS benchmarks on two different platforms. Section 7
summarizes closely related work. Section 8 presents our con-
clusions and our plans for future work.

2. STATIC ANALYSIS

We use memory reuse distance as a metric to understand
and model memory locality in programs. To collect memory
reuse distance data, we instrument an application’s binary
and insert profiling code before each memory reference in
the program. Because we instrument object code instead of
source code, our tools are language independent and natu-
rally handle applications with modules written in different
languages. In addition, binary instrumentation enables us
to study highly-optimized code whereas source code instru-
mentation may inhibit aggressive compiler optimizations.

In this section, we describe our toolkit’s static analysis
capabilities. We use static analysis of binaries to guide every
step of our modeling and prediction process. Using static
analysis, we

e reconstruct the control flow graph (CFG) for each rou-
tine,?

e identify the natural loops in each CFG using interval
analysis [12] and compute the loop nesting structure,

e derive symbolic formulae for each reference’s access
pattern, and

e identify references that must be profiled (e.g. we do
not monitor accesses produced by register spill/unspill
code) and customize the profiling code for each mem-
ory instruction.

The rest of this section describes a static analysis tech-
nique for computing symbolic formulae that characterize the
access pattern of each memory reference, and how we use
this analysis to improve modeling accuracy.

2CFG construction from a binary is performed by EEL [7]
on top of which our toolkit’s binary analysis capabilities are
built.

2.1 Static Analysis of an Access Pattern

For each memory reference, we statically derive several
symbolic formulae that describe the pattern of locations it
accesses during execution. We perform this analysis in-
traprocedurally. We compute two types of formulae. For
each reference in the program, we compute a formula for
the first location it accesses. For references inside loops, we
also compute formulae that describe how the accessed loca-
tion changes from one iteration to the next.

We begin by constructing a first accessed location formula
for each reference in a routine. For each register used in
a reference’s address computation, we recursively traverse
the CFG backwards along use-def chains until either we en-
counter a load immediate value, we cannot trace any fur-
ther inside this routine (the traced register is the result of
a function call or we reach the top of the routine), or we
determine that a formula for the register was already com-
puted while analyzing a previous instruction. During this
backward traversal of the CFG, we consider only forward
CFG edges. As we unwind each step of our traversal, we
compute a symbolic formula at each machine instruction
along the traversal by applying the instruction’s operator to
the formulae computed for its source registers. We cache
every intermediate result so that we don’t have to traverse
the same chain of instructions a second time when analyzing
another instruction.

During a use-def chain traversal, if we find that a register
is reloaded from the spill area, we trace backward along
CFG edges for a corresponding spill to the same location
and then resume our use-def chain traversal from the spill.
We generalized our mechanism for handling reloaded spill
values to work with arbitrary loads after we encountered a
binary in which we found that the compiler had saved the
value of a register in the data segment and later loaded it to
compute the address of a memory reference. If the value of a
register is defined by a load instruction, we trace backward
along CFG edges for a store with a symbolic formula equal
to the load’s symbolic formula®, and we continue tracing
back from the register whose value was stored.

Formulae are restricted to sums of general terms includ-
ing immediate values, loads from a constant address, loads
from the caller’s stack frame (an argument passed by refer-
ence), and registers whose formulae cannot be written as a
sum of these terms (e.g. loads from an undetermined ad-
dress, a product of two non-constant formulae, etc.). Each
term of a formula can have integer numerator and denom-
inator coefficients. With these restrictions, any non addi-
tive (not an add or a sub) operation of two non-constant
formulae will produce a register value. When at least one
operand is a constant, several operations can be computed
without simplification to a register value: multiply, divide,
and left /right shift by a constant value can be performed by
updating the coefficients of each term in the non-constant
operand. If both operands are constants, all arithmetic and
bitwise operators can be computed precisely.

For memory references inside loops, we compute addi-
tional formulae that indicate how the accessed location dif-
fers from one iteration to the next. We compute a stride for-
mula for each loop level containing the reference. For each
level of a loop nest, we apply a recursive algorithm that tra-

3The symbolic formulae for the instructions upstream of the
one currently analyzed have been already computed.



/* multiply two squared matrices */ Ali ﬁ']l:
void matrix multiply(int N, double *A, ’
double *B, double *C)
{
int i, j, k; 2?&1]
P Lol ik+
for ( i=0 ; i<N ; i+=1 ) Blk+1,]

for ( j=0 ; J<N ; j+=1 ) {
C[i*N+j] = 0;

for ( k=0 ; k<N ; k+=2 )
C[i*N+j] +=

A[i*N+k]*B[k*N+j] +

A[i*N+k+1]*B[ (k+1)*N+j]; Clil

(a) matrix multiply source code
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(b) assembly for the innermost loop and the derived symbolic formulae

Figure 1: Static analysis example. The left subfigure presents the source code for a naive matrix multiply
implementation, and on the right we have the SPARC assembly code for the innermost loop annotated with
the symbolic formulae computed for each memory reference.

verses backward along CFG edges, similar to the way we did
when computing first accessed location formulae. However,
when computing stride formulae, we consider only forward
CFG edges that are part of the analyzed loop and the loop’s
back edge. This recursive search terminates when either we
encounter a load immediate operation, we traced backwards
a complete iteration without finding a definition for this reg-
ister (this register contains an invariant value with respect
to this loop), or we reach a definition for a second time.
In this last case, the found instruction is part of a chain of
instructions that update an index variable. When the recur-
sion returns, the stride formulae are computed by applying
the mathematical operators corresponding to each interme-
diate machine instruction to the non-invariant components
of the source formulae.

The stride formulae are restricted to the same sums of gen-
eral terms as the first accessed locations formulae. However,
a stride formula has two additional flags that can be set by
the recursive algorithm. The first flag indicates if an access
has an irregular stride; this flag is set if the reference’s stride
is not constant for all iterations of that particular loop. The
second flag indicates if an access is indirect and it is set if
the formula for the accessed location depends on the value
of another load which has a non-zero stride with respect to
this same loop.

For example, Figure 1(a) presents the source code for a
naive implementation of the matrix multiply algorithm. Be-
cause the program is written in C, the three matrices have
been allocated as one-dimensional arrays and the rows of
each matrix are contiguous in memory. The three matri-
ces are dynamically allocated and their size is passed as an
argument to the matriz_multiply function to validate the
correctness of the computed formulae in the presence of sym-
bolic values.

Figure 1(b) presents the SPARC assembly code for the
innermost loop of the matrix_multiply algorithm. The five
memory references have been annotated with symbolic for-
mulae we derived through static analysis. Each reference
has a formula for the first accessed location, and three stride
formulae, one for each level of the loop nest. Each refer-
ence is also annotated with the corresponding source code
array access to make the code easier to understand. Those
familiar with the SPARC assembly language will recall that
registers %10, ..., %15 are used for passing the first six in-

put arguments of a routine, and will notice that all symbolic
formulae are correctly computed relative to the source code
on the left. The compiler has peeled one iteration of the
k-loop, therefore the first location formulae correspond to
i = 0,7 = 0,k = 2. Although in the assembly code each
reference uses distinct address registers, the formulae for
references to the same array show they are related. The
k-loop was unrolled by hand once® and we compiled the bi-
nary with unrolling disabled to keep the size of the assembly
code small for the purpose of this example, while at the same
time having the loop unrolled to show how this type of static
analysis can uncover related references.

We say two references rs, r; located in the same loop
have similar access patterns, if they have equal stride for-
mulae relative to each loop containing them. In other words
Stride(rs, L¥) = Stride(rs, L*) for every level k loop L* con-
taining them, k > 1. For our example in Figure 1(b), refer-
ences Ali, k] and A[i, k + 1], as well as references Blk, j| and
B[k + 1, 7] have equal strides at each loop level, and there-
fore they have similar access patterns. This is no surprise for
somebody looking at the source code, but extracting such
information from binaries requires the detailed static anal-
ysis we described.

2.2 Applications of Symbolic Formulae

A first use of the statically derived symbolic formulae is
at instrumentation time. Previously, we explained that we
collect memory reuse data at reference level. Such an ap-
proach not only enables detailed predictions at instruction
or loop level, but also enables more accurate models than if
we collected aggregate reuse information for the entire pro-
gram. However, as noted in [8, pages 46-53], modeling reuse
distance data at instruction level is prone to errors due to
the alignment of data in memory when the reuse informa-
tion is collected for larger than unit size memory blocks. As
we describe in Section 3, to account for spatial reuse, we
collect reuse information of memory blocks, where the block
size is equal to the line size of the target cache.

Consider now the matrixz_multiply example from Figure 1
where the inner loop is unrolled once. Let’s assume that ar-
ray A is always aligned to the start of a cache line. Because

4There must be additional code not included in the figure
for the k-loop to process the reminder element when N is
odd.
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Figure 2: The distribution of cache misses for the two references to matrix A from the matrix multiply
code presented in Figure 1, for an even problem size (N=8) and an odd problem size (N=9), assuming an
architecture with a cache line that holds four double elements.

the size of a cache line is a power of two, an even number of
array elements will fit into a cache line. In our case, for an
even value of N, the reference corresponding to Afi, k + 1]
will always see a small reuse distance due to spatial reuse,
because Ali, k] will always perform the first access to a new
cache line. However, for an odd value of N, A[i, k+1] will ac-
cess a new cache line first for odd rows of A, while A[i, k] will
access a new cache line first for even rows. Such inconsisten-
cies between the reuse pattern at different problem sizes can
cause large modeling errors for the affected references. How-
ever, if we consider A[i, k] and A[i, k+ 1] together, the union
of their reuse distance data is consistent and predictable for
every problem size.

Figure 2 presents graphically this behavior for matrix sizes
8 and 9, assuming an architecture where the cache line size
is four times the size of an array element. In both cases,
the total number of misses is approximately equal to one
quarter of the number of memory accesses because only one
miss occurs per four-element cache line. However, the distri-
bution of misses between the two references is different for
each problem size. This problem is even more pronounced
when the unrolling factor is greater and a larger number of
references are affected.

A similar problem occurs in codes working on arrays of
records when the cache line size is not a multiple of the
record size. In such a case, depending on the record index,
different fields can occupy the first position of a cache line.
As a result, different references encounter a long reuse dis-
tance during the dynamic analysis depending on the record
index. For this reason, at instrumentation time we find the
sets of references that have similar access patterns and in-
sert code that collects a single reuse distance histogram for
every such set.

After reuse distance histograms are collected, we perform
additional static analysis to identify object code loops that
have their origin in the same source code loop, and we per-
form additional aggregation between reference groups from
these loops that have similar access patterns. We extend
the definition presented before to say that two references rs,
r: located in different loops have similar access patterns, if
they have equal stride formulae relative to each loop con-
taining both of them, and their stride formulae relative to
distinct, same level loops containing them have an integer
ratio. In other words: Stride(rs, Lft) = Stride(r, Lft)

T T T
256+ I both aggregation methods B
I aggregate same loop + remainder loop
[ aggregate same loop only
[ no aggregation

129-256

65-128

33-64

17-32

# of references in set
<

0 20 40 60 80 100 120
Number of sets

Figure 3: Distribution of the sizes of the instruc-
tion groups derived for benchmark NAS BT 3.0
when: (1) we perform no aggregation, (2) only ref-
erences with similar patterns from the same loop are
grouped together, (3) we aggregate across adjacent
object code loops.

for every level k loop L*, containing both references, and
Stride(rs, L¥)/Stride(rs, LY) = m/n for every pair of dis-
tinct level k loops L’; and Ly containing references rs and 7
respectively, where m and n are integers and either m =1
orn =1.

Loop optimizations such as software pipelining and loop
unrolling, split a source loop into multiple object loops: a
main loop and a prolog or an epilog loop, which executes the
remainder iterations. Compilers use loop unrolling aggres-
sively. In addition, stencil computations found in scientific
applications access multiple elements of an array with the
same stride. As a result, there are many opportunities to ag-
gregate references into larger sets, both inside the same loop
and across adjacent loops. Figure 3 presents the distribu-
tion of the sizes of the groups of memory access instructions
derived for the NAS 3.0 BT benchmark. On the y axis we
have the number of instructions in a group, and on the x
axis we see how many groups of that size were produced by
aggregation. If we perform no aggregation, there are more
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Figure 4: Example of reuse distance histogram. All
references with reuse distance less than the cache
size are hits.

than six thousand different groups, each with only one refer-
ence. During the instrumentation step only references with
similar access patterns from the same loop are aggregated,
and the number of distinct instruction groups reduces to
447. In the post-processing phase, after additional aggrega-
tion is performed across loops, only 329 groups remain for
the NAS BT 3.0 benchmark.

Another important use of symbolic formulae is to un-
derstand memory dependences between instructions within
loops. Dependence information is used to construct depen-
dence graphs, which in turn are used to predict the instruc-
tion schedule for a different architetcture [9], or to under-
stand the level of memory parallelism within loops.

3. DYNAMIC ANALYSIS

Often, an application’s memory access patterns cannot
be understood completely using only static analysis. In the
previous section we described how to build a static charac-
terization of each reference’s access pattern. The statically
derived symbolic formulae are useful to determine if two
references have the same access pattern, or even to perform
dependence analysis for regular array references found in
scientific applications. However, symbolic formulae depend
upon information that is unknown at compile time, and for
irregular applications they are less precise. Moreover, un-
derstanding how the distance between two accesses to the
same location depends upon input parameters, can only be
determined by measuring it at run time.

To understand an application’s memory access patterns,
we collect histograms of the reuse distance observed by each
load or store instruction. For a fully-associative cache, one
can predict if a memory access is a hit or a miss by com-
paring its reuse distance with the size of the cache (see
Figure 4). Beyls and D’Hollander [3] show that reuse dis-
tance predicts the number of cache misses accurately even
for caches with a low associativity level. However, reuse dis-
tance alone cannot predict conflict misses. In section 5.2 we
show how to estimate the number of conflict misses for a set-
associative cache using a probabilistic model in conjunction
with our memory reuse distance models.

We collect reuse distance information separately for each
reference group as described in section 2.1. Before each
memory reference, we invoke a procedure that updates a
histogram of reuse distance values for that reference. A de-
tailed description of the algorithm that we use to compute
the reuse distance of each memory access can be found in [9].

By using a unit size memory block, we can collect pure
temporal reuse distance information. However, using this
approach we fail to observe spatial reuse in cache lines. By
setting the memory block to a non-unit cache line size, we

can also measure spatial reuse because we collect the reuse
distance of data blocks rather than data elements. To cor-
rectly account for spatial locality, we need to use a memory
block size equal to the size of the cache line on the target ar-
chitecture. Currently, to predict the memory access behav-
ior of an application on arbitrary systems, we need to collect
reuse distance data for all cache line sizes that might be en-
countered in practice. The most common cache line sizes in
use today are 32, 64 and 128 bytes. Because of the reuse
distance data’s dependence on cache line size, our character-
izations of application behavior are not entirely architecture
independent, but they come close to this goal. The size of
the memory block used by our runtime library is defined by
an environment variable; therefore collecting data for dif-
ferent cache line sizes does not require re-instrumenting the
binary or re-compiling our instrumentation library.

The time complexity for computing the reuse distance
seen by one memory access is O(log M), where M is the
number of distinct memory blocks touched by the appli-
cation. Overall, the overhead of collecting memory reuse
distance information for the entire execution is O(N log M),
where N is the number of memory accesses the program
executes, and the space required by the data structures for
monitoring reuse distance is O(M). Time and space com-
plexities for collecting memory reuse distance histograms are
both significant. Therefore, we would like to predict the dis-
tribution of the reuse distance histograms for large problem
sizes that are of interest in practice, from data collected for
several small problem sizes.

4. BUILDING SCALABLE MODELS

To predict an application’s memory access behavior for a
different problem size, we have to model how each reference’s
reuse distance scales as a function of problem size. For this,
we must first collect MRD data from multiple executions,
with different and preferably small data sets.

Modeling memory access behavior is difficult. A single ref-
erence in the program may see cold misses and many distinct
reuse distances. The simplest possible model of a memory
reference’s reuse distance would predict its average value for
each problem size. However, such a model is almost always
useless. Consider a reference performing stride one loads.
Its first access to a cache line yields a long reuse distance;
accesses to subsequent words yield short reuse distances.
An average distance model can predict either all hits or all
misses; neither prediction is accurate.

We need to model the behavior using histograms. A reuse
distance histogram for a reference contains a separate bin
for each distinct distance encountered. We must model the
structure and scaling of these histograms to understand the
distribution of reuse distances as a function of problem size.
Building meaningful models for histograms of reuse distance
from executions with different problem sizes is challenging.
Executions using different problem sizes result in histograms
that each have a different number of bins and frequency
counts; the varying number of bins complicates modeling.

One possible modeling approach is to divide each his-
togram for any reference or problem size into an identical
number of bins using a fixed strategy regardless of the dis-
tribution of the data. How many bins to consider has an
important impact on the size and accuracy of the models.
A small number of bins will yield a compact model, but the
model may lack precision. A large number of bins will im-
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Figure 5: (a) MRD data collected for one reference in Sweep3D; (b) Model constant distance first, and lump
remaining data in one bin; (c) First split of the non-constant data; (d) Final model for the data in (a); (e)
Model evaluation at problem size 70; (f) Model evaluation at problem size 70 on a logarithmic y axis, and
predictions for a 2048 blocks level 1 and 24576 blocks level 2 cache.

prove model accuracy, but will add unnecessary complexity
and cost to modeling for many references that use only a
few different reuse distances. To avoid this problem, we ex-
amine a reference’s collected data and pick an appropriate
number of bins and their boundaries to adequately represent
its histogram data across the range of problem sizes.

4.1 Modeling MRD Histograms

We sort the bins in each reference’s MRD histogram by
increasing distance. The first bin in a reference’s histogram
holds the smallest reuse distance for the reference. Fig-
ure 5(a) shows MRD histograms collected by our tool for
different problem sizes for one of the most frequently exe-
cuted memory accesses in the ASCI Sweep3D benchmark [1].
To illustrate our modeling algorithm, we plotted our models
of MRD histograms in 3D Cartesian coordinates for each
step of the algorithm. The x axis represents the problem
size (from 20 to 50 in this case); the y axis represents the
additive normalized execution frequency of the bins for each
problem size, such that the total execution frequency of each
histogram is one; and the z axis represents the reuse dis-
tance.

We begin our analysis by examining the leading bins of a
reference’s histograms for each problem size. If the leading
bins have the same reuse distance across all problem sizes,
it means they contain the fraction of accesses that have ex-

perienced temporal or spatial reuse in the innermost loop
enclosing that reference. The values of the constants de-
pend upon the shape of the code in each particular loop,
namely, how many accesses to other data structures are ex-
ecuted between two accesses to the same data structure dur-
ing one iteration. These small distances are constant across
all problem sizes because the shape of the code is invariant
across problem sizes.

If a reference’s histograms have such leading bins with
a small constant distance, we model them separately (see
Figure 5(b)), and remaining data is lumped together in one
bin represented in the figure by a model of its average dis-
tance. Since the reuse distance of the leading bins is con-
stant, we need to model only the execution frequency of
these bins. The fraction of accesses that experience spatial
reuse is usually not constant across all problem sizes. The
explanation for this is that for mesh like data structures, if
the dimensions are padded to align the data or to minimize
conflict misses, some of the memory blocks are not com-
pletely filled with useful data. Therefore, accesses to these
incomplete lines experience less spatial reuse than accesses
to cache lines that are completely filled. As problem size
increases, the significance of the padding relative to the size
of the data structure diminishes. As a result, the fraction of
accesses with spatial reuse increases asymptotically towards
1 — reference_stride/cache_line_size, and we are able to



capture this behavior with our technique.

The remaining bins and their parameters are determined
using a recursive algorithm. We start by computing an aver-
age distance for all of the references that were not modeled
in the first step, and we build a model for their average dis-
tance as seen in Figure 5(b). Next, we recursively split the
set of accesses in two and compute a model for each subset.
The recursion stops when the models of the two resulting
subsets are sufficiently close. We apply this algorithm to
determine a partitioning of the data into an appropriate
number of bins by considering the data for all problem sizes
at once. At each step, we use a heuristic to determine how
to partition the accesses. Its decisions influence the con-
vergence speed, the accuracy, and the stability of the final
model.

In our experiments, the partitioning heuristic that yielded
the most stable and accurate results was one that selects
partition boundaries such that the ratio between the number
of accesses in the two partitions resulting from a split is
the same across all problem sizes. With such an approach
we need to model only the average reuse distance of each
bin; execution frequency is easily computed by dividing the
frequency of the parent bin proportionally with the splitting
ratio. To compute the splitting ratio of a bin, we apply the
following algorithm:

e Determine midpoint of the reuse distance range for
each problem size, and compute the ratio between the
number of accesses with reuse distance less than and
greater than the midpoint value for each problem size.
Using the reuse distance midpoint speeds up model
convergence by favoring creation of narrow bins where
reuse distance vary abruptly along the y axis, and wide
bins where large fractions of accesses have similar reuse
distances, with a minimal recursion depth.

e Select median ratio across all problem sizes, and use
this median value as the splitting ratio for all problem
sizes. We opted to use the median ratio to increase
modeling stability in case the midpoint ratios for some
problem sizes are significantly different.

Figure 5(c) presents a snapshot of the model after the first
splitting step. If we look at the reuse distance histogram
for problem size 50 in Figure 5(a), we see that the largest
observed reuse distance is around 6 x 10*. Then, we can
approximate the midpoint reuse distance for this problem
size at around 3 x 10*. We notice that many more accesses
have reuse distance under the midpoint value than above
it. As a result, the two bins produced by the first split
contain very different fractions of accesses, but they cover
approximately equal ranges of reuse distance.

After partitioning, we perform a (rarely needed) coalesc-
ing step that examines adjacent bins and aggregates them
together if they have similar polynomials describing their
reuse distance. Our approach produces a minimal number
of bins with almost no loss in accuracy. If a large fraction of
accesses have comparable reuse distances across all problem
sizes, all those accesses go into one bin. However, if part of
a reference’s histogram is composed of many small fractions
of accesses with different reuse distances, our approach pro-
duces a large number of bins for that part of the histogram
and successfully captures the instruction’s complex behav-
ior. Figure 5(d) presents the final model computed for the
data in Figure 5(a).

Our modeling strategy is currently implemented in Mat-
lab. We use quadratic programming [10] to determine the
function that best approximates the input data we collected.
Each approximation function is written as a linear combi-
nation of a set of basis functions. The program uses either
a default monomial base or a set of user-provided bases in
symbolic form such that logarithmic or other non-linear con-
tributions to the model can be considered. The modeling
program computes the coefficients of the basis functions in
the linear combination that closest approximates the col-
lected data. We include restrictions to reduce or remove
oscillations of the resulting fit and to ensure that the com-
puted function is either convex or concave depending upon
the program characteristic that is modeled. Our approach
works best with scientific codes that have predictable exe-
cution patterns, namely, ones that do not use adaptive al-
gorithms.

5. MODEL EVALUATION

The problem of determining the ratio of hits and misses
for a given cache size C is equivalent to determining the
intersection of the model with the plane defined by z = C.
Similarly, the problem of computing the expected behavior
for one instruction at a given problem size P is equivalent
to determining the intersection of the surface and the plane
defined by z = P. We can also determine the minimum
cache size such that the hit-ratio is H. The solution to
this problem is the intersection of the model and the plane
defined by y = H. Any two of these three problems can be
combined and the solution is the intersection of the surface
with the corresponding two orthogonal planes.

5.1 Predictions for Fully-associative Caches

For a fully-associative cache, we can use this approach
to predict the ratio of misses for a given problem size and
cache size. Figure 5(e) presents the expected behavior of
the instruction modeled in Figure 5(d) at problem size 70.
Assume that we want to predict the hit ratios for an ar-
chitecture with two fully-associative levels of cache, where
level one has 2048 blocks and level two has 24576 blocks. For
this we must determine the number of accesses that have a
reuse distance less than the specified cache sizes. Because
the maximum reuse distance predicted for this reference is
three orders of magnitude larger than the size of the target
L1 cache, Figure 5(f) presents the predicted MRD histogram
for problem size 70 on a logarithmic y-axis. The hit ratio is
determined by the intersection of the predicted curve with
the cuts corresponding to the sizes of the two cache levels.
For this instruction and the considered target architecture,
the model predicts a hit ratio of 95.4% for the L1 cache and
98.4% for the L2 cache.

5.2 Predictions for Set-Associative Caches

In section 3 we defined memory reuse distance as the num-
ber of distinct memory blocks referenced between two con-
secutive accesses to the same memory block. If an access
has reuse distance n, it means that we referenced n distinct
other blocks since the previous access to the block currently
accessed. For a fully-associative cache, any memory block
can map to any cache block. Therefore, if the cache uses
LRU replacement policy and has less than or equal to n
blocks, we know that current access will be a miss because
the n distinct blocks accessed since the previous access to



this block have caused it to be evicted from the cache. Simi-
larly, if the cache has more than n blocks, the current access
is a hit because the accessed block was not evicted yet.

For a set-associative cache with s sets and associativity
level k, a memory block can map only to one of the k blocks
of a single set, where the set is uniquely determined by the
block’s location in memory. As a result, an access with reuse
distance n is a hit if less than k£ out of the n accessed blocks
map to this same set. The mapping of memory blocks to
cache sets depends upon how data structures are laid out in
memory. However, we do not collect information about the
location of accessed blocks. As Hill and Smith noted in [6],
we can estimate set-associative LRU distance from fully-
associative LRU distance using a statistical model. This
model is based on the simplifying assumption that accessed
blocks are uniformly distributed in memory. In other words,
the probability that two blocks map to the same set is 1/s
and independent of where other blocks map.

With this assumption, we first compute the probability
that exactly ¢ blocks out of n distinct blocks map to a given
set. We first notice that for ¢ > n, the probability is zero be-
cause we cannot have more than n blocks map to a single set
when there are n blocks overall. The mapping probability
can be written as:

w | =

0 ifi>n

szt (n P
P’mapping(s,n’i)—{ ( ) (T) ( 1 ) leSn

The probability formula for ¢ < n has three terms:

° (%)Z because 7 blocks must map onto a specific set (the
set of the currently accessed block)

° (%)"71 because the other n—i blocks must map onto

the other s — 1 sets.

n
)

total number of n blocks can map onto our set.

) because any combination of ¢ blocks out of the

The probability that an access with reuse distance n hits
in a set-associative cache with s sets and associativity k can
be written as:

min(k—1,n) 1 i s 1 n—i
— n
=57 (2 (597 (1)
=0

and the probability of that access being a cache miss is 1
minus the previous formula:

min(k—1,n) 1 % 1 n—i
s — n
Priss(s,kim) =1— " (g) < s ) <Z)
=0

This model fits very well with our MRD model, because we
do not predict just an average distance for a reference, but a
histogram of how many times each distance is encountered.
For each bin of a reference’s histogram we compute a miss
probability as a function of the bin’s reuse distance. The
resulting probability represents the fraction of accesses in
that bin that should be expected as cache misses.

In the case of a fully-associative cache we have only one set
(s = 1) and k represents the number of blocks in the cache.
If n > k — 1, probability to hit in the cache is zero because
(S;Sl)"fZ =0foranyi < k—1<mn. If n <k—1, probability
to hit in the cache is one because the sum reduces to a single

term, ( n )7 where ¢ = n < k—1. Thus, the formula is valid

1
also in the special case of a fully-associative cache, although
it is more efficient to use the direct method presented in
Section 5.1 to compute the number of cache misses for fully-
associative caches. However, we observe that while for a
fully-associative cache each bin counts as either all hits or
all misses, in the case of a set-associative cache a bin can
have a dual behavior.

We can approximate the number of misses for a set-associative

cache from the histogram of reuse distances predicted by our
MRD model, with the following formula:

Nummisses (HiSt,S, k) = Z

bin; € Hist

(Pmiss(sy k7 Dbini)Fbini)

where Dy, and Fyin, are the average MRD of bin; and the
execution frequency of bin; respectively.

Although the assumption that accessed memory blocks
are uniformly distributed in memory is not always true, the
miss predictions for set-associative caches produced by this
model (see section 6) are quite accurate.

6. RESULTS

To validate our approach, in this section we compute cache
and TLB miss predictions at the loop level for the ASCI
Sweep3D benchmark and several of the NPB 2.3-serial and
NPB 3.0 benchmarks, for mesh sizes ranging from 10° to
2003. We compare our predictions against measurements
using hardware performance counters on two different plat-
form: an Itanium2 based machine and an Origin 2000 sys-
tem based on the MIPS R12000 processor. The memory
hierarchy characteristics for the two testbed machines are
presented in table 1. On the Itanium, floating point loads

Level # Dblocks/associativity /block size
Itanium2 R12000
LiD 256/4-way /64 B 1024/2-way/32 B

L2 2048/8-way/128 B | 65536/2-way/128 B
L3 12288/6-way/128 B -
L1 TLB® 32/fully/16 KB 64/fully /32 KB°

L2 TLB®

128/fully /16 KB -

Table 1: Memory hierarchy characteristics for the
testbed machines.

and stores bypass the small L1D cache and its associated L1
TLB. Because the benchmarks used in this test suite are all
floating point intensive, the L1D cache and the L1 TLB of
the Itanium2 machine have very little impact on their per-
formance, and we do not present predictions for these two
memory levels.

Our memory reuse distance models for an application are
a function of cache line size, are parameterized by one of
the application’s input parameters as described in Section 4,
while size and associativity level of the target cache are used
during evaluation (see Section 5) to predict the number of

®A TLB behaves exactly like an LRU cache with a number
of blocks equal to the number of entries in the TLB, and the
size of each block equal to the size of the memory mapped
by each entry.

50n the R12000, each TLB entry maps two consecutive
pages, therefore the size of the memory mapped by an entry
is 32 KB.



cache misses. Nowhere in this process we make use of infor-
mation such as the CPU’s frequency or its number of func-
tional units. Our cache miss predictions have nothing to
do with the architecture of the CPU core. Therefore, while
we consider only two platforms, we present predictions for
six different cache configurations (two cache levels and one
TLB level on each platform). From table 1 we see that the
testbed machines cover a diverse set of cache configurations,
including capacity, block size and associativity.

To compute the predictions, we compiled the benchmarks
on a Sun UltraSPARC-II system using the Sun WorkShop 6
update 2 FORTRAN 77 5.3 compiler, and the optimizations:
-zarch=v8plus -0/ -depend -dalign -xtypemap=real:64. Mea-
surements on the Itanium2 machine were performed on bi-
naries compiled with the Intel Fortran Itanium Compiler
8.0, and the optimization flags: -O2 -tpp2 -fno-alias. On
the Origin 2000 system we compiled the binaries with the
SGI Fortran compiler version 7.3.1.3m and the optimization
flags: -O8 -r10000 -64 -LNO:opt=0. We used the highest
optimization level but we disabled high-level loop optimiza-
tions, because the sets of loop nest transformations imple-
mented in the Sun, Intel and SGI compilers are different.
Loop nest transformations change the execution order of the
iterations of a loop nest, effectively altering an application’s
memory access pattern.

We present results for three benchmarks on each of the
two machines, including results at routine and loop level for
one benchmark on each architecture. We present results for
ASCI Sweep3D and the BT benchmark from NPB 2.3-serial
on both architectures. In addition, on the Itanium2 machine
we analyze in more detail the behavior of the hyper-plane
2D implementation of LU from NPB 3.0 , and on the Origin
2000 we look at the SP benchmark from NPB 3.0. The NAS
benchmarks use statically allocated data structures, with
the maximum size of the working mesh specified at compile
time. The benchmarks can be compiled in several standard
classes named A, B and C, which have a maximum mesh size
of 64, 102 and 162 respectively. We created an extra class
L with a maximum mesh size of 200. We used static and
dynamic analysis of the class A binaries to construct the
models. The measurements on the Itanium2 and R12000
machines were performed on the binary of minimum class
that accommodates that particular size.

To compute the predictions, we collected MRD data for
block sizes 32, 128, 16 KB and 32 KB, for a set of problem
sizes randomly selected between 20 and 50. We collected
data on relatively small input problems to limit the cost of
executing the instrumented binaries. Next, we built mod-
els of MRD parameterized by problem size for each of the
applications, as described in section 4. Finally, to predict
the cache and TLB miss counts, we evaluated the models at
each problem size of interest. For each memory hierarchy
level on each of the two machines, we predict a miss count
for a fully-associative cache of the same size as the actual
cache on the machine using only the MRD models, and a
miss count that takes associativity into account using the
probabilistic model described in section 5.2.

6.1 Predictions for Itanium2

Figure 6 presents the results for the Itanium2 machine.
Each graph on the top row presents the measurements and
the predictions aggregated at the entire program level for
one application. For the L2 and L3 caches we present both

fully-associative and set-associative predictions as explained
above. Because the TLB is fully associative, there are no
set-associative predictions for it. For all graphs, the z axis
represents the mesh size and the y axis represents the num-
ber of misses per cell, per iteration, where number of cells
is equal to mesh_size> for all applications considered. This
normalized view of the data enables us to understand how
the application’s characteristics scale with the amount of
useful work, and at the same time makes the graphs more
readable by bringing the counts for all mesh sizes to com-
parable levels. The range of problem sizes for which we
measured reuse distance histograms to build the models is
indicated on each graph by the two vertical lines.

Wile the predictions are in general accurate, we notice
that we under-predict the number of L2 misses for the LU
benchmark at large problem sizes. Looking at the routine
level predictions, we noticed that the entire L2 prediction
error came from routine rhs. The second row in figure 6
presents the predictions for three routines of the LU appli-
cation, including routine rhs. Moreover, we have noticed
that our models under predict the number of L2 misses for
all implementations of LU in NPB 3.0 and in NPB 2.3, and
in all cases the error was occurring in routine rhs. In all these
cases, we noticed a correlation between the higher number
of measured L2 misses and a high rate of TLB misses. As
you can see from the graph for routine rhs in figure 6, al-
most all TLB misses measured for the LU application are
produced by this routine. On a TLB miss, the OS needs
to find the entry for the offending page in the virtual page
table which is stored in memory. On the Itanium, the page
table is accessed through the L2 cache. This has the advan-
tage that on a TLB miss, in addition to the offending entry
being brought into the TLB, an entire cache line of page
entries is brought into the L2 cache. Thus, successive TLB
misses to neighboring pages are serviced much faster from
the L2 cache instead of going all the way to memory. How-
ever, if an application accesses memory with a large stride
(larger than the size of a memory page times the number
of page entries that fit in a cache line), each TLB miss will
have to go to L3 or to memory causing an L2 cache miss.
This is what happens in routine rhs of the LU benchmark.
We cannot predict these cache misses because they are not
produced by the application explicitly, but are the result
of an interaction between the architectural design and the
application’s access stride.

On the bottom row of figure 6, we present the predictions
and the measurements for two level 3 loops from routine
rhs. For these loops, we notice that the number of L.2 misses
predicted by the model is zero for all problem sizes, but the
measurements on the Itanium2 show the code experiences
L2 misses once it starts missing in the TLB.

6.2 Predictions for MIPS R12000

Figure 7 presents the results for the Origin 2000 system.
As with the Itanium results, each graph presents the nor-
malized counts of cache and TLB misses. All L2 and TLB
miss counts are scaled by a factor of 5 to bring them into the
same range with the L1 miss counts and make the graphs
easier to read. We present both the fully-associative and the
set-associative predictions for the two cache levels, and only
fully-associative predictions for TLB. While for the Itanium
machine the difference between the fully-associative and the
set-associative predictions is quite small due to the high as-
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Figure 6: Predictions of L2, L3 and TLB misses for ASCI Sweep3D and two NAS benchmarks on an Itanium2
based machine with a 256KB 8-way set-associative L2 cache, 1.5MB 6-way set-associative L3 cache, and 128
entries fully-associative L2 TLB. For the LU application we present more detailed predictions for three of its

routines and two level 3 loops.

sociativity level of its L2 and L3 caches, on the R12000 with
its 2-way set-associative caches we can notice a significant
difference. Although based on the simplifying assumption
that accessed memory blocks are uniformly distributed, the
set-associative predictions approximate well the measured
counts. We cannot estimate precisely the conflict misses at
each problem size (see the graph for Sweep3D in figure 7),
but the set-associative predictions capture the actual trend.

We’ll analyze in more detail the SP benchmark from NPB
3.0. We selected this benchmark on the R12000 because
of the large difference between its fully-associative and set-
associative L1 predictions. Second row in figure 7 presents
the results for three routines from benchmark SP 3.0. We
selected routines that show different memory utilization pro-
files, to demonstrate the accuracy of the models with various
memory access patterns. We notice that most of the SP’s
L2 miss prediction error is produced by routine compute_rhs,
and that almost all its TLB misses are produced by routine
z_solve. While on the Itanium the 256 KB L2 cache seems
too small for caching page table entries in the presence of

large stride accesses, on the R12000 with its large 8 MB L2
cache we did not notice an increase in the number of L2
misses due to a high rate of TLB misses. Last row in fig-
ure 7 shows two level 3 loops from routine z_solve. The L1
set-associative predictions approximate well the measured
values for all problem sizes, and we can see the number
of capacity and conflict misses at each problem size. The
accuracy of the set-associative predictions validate in turn
the accuracy of our MRD models which predict the fully-
associative distances used by the probabilistic model.

7. RELATED WORK

Over the years, memory reuse distance has been studied
by many researchers investigating memory hierarchy man-
agement techniques [2, 11] or trying to understand data
locality in program executions for individual program in-
puts [3, 4]. Recently, two other research groups have ex-
plored using memory reuse distance data from a few train-
ing runs to compute cache miss rate predictions for other
program inputs. Zhong et al. [13] describe using two mem-
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Figure 7: Predictions of L1, L2 and TLB misses for ASCI Sweep3D and two NAS benchmarks on a MIPS
R12000 based machine with a 32KB 2-way set-associative L1 cache, 8MB 2-way set-associative L2 cache, and
64 double entries fully-associative TLB. For the SP application we present more detailed predictions for three

of its routines and two level 3 loops.

ory reuse distance histograms that are an aggregation of all
accesses executed by a program as the basis for modeling.
Fang et al. [5] use a similar modeling strategy but they col-
lect data and build models on a per-instruction basis.

Our work differs from that of Zhong et al. and Fang et
al. in six important ways. First, we characterize memory
access patterns at the level of references groups determined
through static analysis while the other two groups, respec-
tively, build their models for the entire program or at the
level of single instructions. Although we have never directly
compared our models against those produced by either of the
other two approaches, we have experimented with different
levels of aggregation using our implementation. In those ex-
periments, we found that building models from histograms
constructed at the program or routine level for non trivial
programs results in significant errors with our automated
method. Similarly, our first implementation of fine-grain
modeling (at the instruction-level) performed no aggregation
and its accuracy was hurt by complex interactions between
multi-word memory blocks and loop unrolling [8, pages 46—

53]. Second, our modeling tool adaptively determines an
appropriate partitioning of reuse distance histograms into
bins while the other two groups use a fixed strategy based
either on a constant number of bins (e.g. 1000) for every
histogram, or on a logarithmic distribution of distances into
bins. Third, we discover the appropriate modeling polyno-
mials for each bin automatically and our models are linear
combinations of a set of basis functions with a dynamically
determined number of terms in each model. Zhong et al.
and Fang et al. use combinations of only two terms where
one is selected from a small set of pre-determined functions
and the other is a free term. Fourth, we predict the ac-
tual number of cache misses for different input sizes rather
than just a miss rate. Fifth, we predict cache miss counts
for both fully-associative and set-associative caches. Finally,
our models can be used to directly predict memory hierarchy
responses for problem sizes not measured; the other afore-
mentioned techniques require partial execution of using the
problem size for which a prediction is desired to experimen-
tally determine data sizes.



8. CONCLUSIONS

This paper describes a technique for constructing machine-
independent models that can be used to predict the mem-
ory hierarchy response for an application on architectures
and problem sizes that have not been studied. By combin-
ing models of application memory access patterns based on
data reuse distance with probabilistic models that capture
the essence of set-associativity in architectures, we are able
to accurately predict cache miss counts for a diverse set of
cache configurations over a large range of problem sizes. In
validating the fidelity of our models, we found that archi-
tectural quirks can cause differences between measured and
predicted performance. For instance, on Itanium2, caching
page table entries in a relatively small L2 cache can produce
a significant number of additional L2 misses when the TLB
miss rate is high. Our memory reuse distance based models
cannot predict these additional L2 misses, as they are not
caused explicitly by memory references in the application.

Our reuse distance based models capture the memory ac-
cess pattern of an application, therefore they are not portable
across HLO" optimizations that change the application’s
memory access pattern. We can predict the memory hierar-
chy behavior of an application in the presence of HLO trans-
formations by constructing models from measurements on a
binary optimized with the same set of transformations. Cur-
rently, neither our models nor any of the other application-
centric models described in Section 7 can predict the num-
ber of cache misses in the presence of hardware or software
prefetching. However, prefetching algorithms implemented
in hardware are usually not very complex and we plan to ex-
plore predicting their effects through a combination of static
and dynamic analysis.

Our immediate plans for research in this area include an-
alyzing the dependence graph of each loop to understand
the level of memory parallelism at loop level. Such informa-
tion would enable us to predict the exposed latency for each
cache miss, which we can then use to refine our predictions
of execution time for scientific applications [9].
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