
LACSI 2005; ITS

1

Performance Analysis, Modeling and Enhancement of Sandia’s
Integrated TIGER Series (ITS) Coupled Electron/Photon Monte

Carlo Transport Code

Mahesh Rajan, Brian Franke, Robert Benner, Ron Kensek and Thomas Laub
Sandia National Laboratories

Abstract— ITS is a powerful and user-friendly software

package permitting state-of-the-art Monte Carlo solution of
linear time-independent coupled electron/photon radiation
transport problems, with or without the presence of macroscopic
electric and magnetic fields of arbitrary spatial dependence. As
one of a few Sandia applications that are targeted for capability
class machines like the ASC Red Storm, we have studied
extensively the performance of this application using thousands
of processors. We have successfully constructed a performance
model and verified the model against measurements on a variety
of Sandia compute platforms. Use of tools like VAMPIR and
PAPI in performance analysis and modeling is discussed. The
original algorithm for computing the statistical quantities after
each batch of Monte-Carlo computations has been modified to
yield improved parallel scaling. Models of alternate message
passing algorithms are investigated and validated against
measurements on the Red Storm.

Index Terms—Performance modeling, performance analysis,
Monte Carlo Radiation Transport

I. INTRODUCTION

T HE INTEGRATED TIGER SERIES (ITS) code is an evolving
Monte Carlo radiation transport code that has been used

extensively in weapon-effect simulator design and analysis,
radiation dosimetry, radiation effect studies and medical
physics research. Many individuals from the DOE labs and
NIST have been involved over the years in the development
and enhancement of ITS [1]. The different features/sections
of the code in ITS: TIGER, MITS, CEPXS, XGEN etc., are
applied to an analysis under investigation through the
selection of appropriate pre-processor directives when the
code is built. Physical rigor for the analysis is provided by
employing accurate cross sections, sampling distributions, and
physical models for describing the production and transport of
the electron/photon cascade from 1.0 GeV down to 1.0 keV.
The ITS code is capable of analyzing particle transport

through both combinatorial geometry models and CAD
models. It also has been significantly enhanced to permit
adjoint transport calculations.

For the purposes of this paper we have analyzed the
performance using as input, data from a real satellite model.
The physical problem solved takes advantage of the MITS
mutli-group/continuous energy electron-photon Monte Carlo
transport code’s capability to address realistic three-
dimensional adjoint computations. The adjoint transport
method is a powerful technique for simulating applications
where the knowledge of the particle flux is only required for a
restricted region of the phase space, but where this knowledge
is required for source parameters spanning a large region of
phase space. The run times for simulations for a complex
combinatorial geometry model using conventional, or
forward, transport are prohibitive and hence the adjoint
calculations used in our satellite model [2].

Our performance analysis of the ITS code was initially
spurred by the JASONs and NAS review of the ASC
programs to assess mapping of a set of DOE applications to
architectures. Another reason for this investigation is because
of the large percentage of compute resources ITS code users
had consumed in the previous years and anticipated similar
usage in the future. Recently we investigated the scaling
characteristics of ITS to tens of thousands of processors.
Execution time measurements have been obtained on various
platforms at SNL; ASCI Red, VPLANT (2.4 GHz Xeon
cluster with Myrinet), ICC (institutional cluster: 3 GHz Xeon
with Myrinet), CPLANT (Alpha cluster with Myrinet) and
more recently on the Red Storm. Our performance model
attempts to follow a similar approach to that expounded by
Kerbyson, et.al [4] and in fact follows closely the model
presented by Mathis, Kerbyson and Hoise [5] in their analysis
of the MCNP particle transport code. The model develops an
analytical expression for the major portions of the execution
time, namely, computation, communication and I/O. At the
present time our expression for the compute time is obtained
by curve-fitting the plot of the measured execution time vs.
the number of histories. For the communication time model
we focused on the communications at the end of each batch of
computations assigned to the processors. This was
accomplished with the VAMPIR tracing tool to obtain the
message sizes and messaging patterns and later correlated to
the MPI calls in the code. For the compute platform

Manuscript received August 26, 2005. This work was supported in part by

the U.S. Department of Energy, SNL CSRF project
Authors are with the Sandia National Laboratories, P.O.Box 5800,
Albuquerque, NM, 87185 (Contact phone: 505-284-5063; fax: 505-844-2067;
e-mail: mrajan@sandia.gov).
Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States National Nuclear Security
Administration and the Department of Energy under contract DE-AC04-
94AL85000.

LACSI 2005; ITS

2

communication characteristics such as bandwidth and latency,
a set of simple benchmarks were run. The I/O time typically
been a fraction less than 3% and at the present no model has
been investigated.

In this paper we present the details of the model and
compare measured performance against the model for
different architectures. We also present results of tests on the
new ASC Red Storm and use the model to predict
performance on it to 10,000 processors. The ITS code has
been recently enhanced to introduce Fortran 90/95 features
and in the process it has also implemented changes in data
structures that would improve performance. As will be seen
from the scaling plots presented below, ITS can suffer a
scaling performance penalty depending on how the history
computations are split among the participating processors and
the frequency with which the statistical tally of the
computations are assembled by the master process. This
performance penalty, due to communication cost incurred in
the many-to-one communication at the end of each batch of
computation, has been remedied by a modified algorithm. We
have investigated a simple implementation using MPI
collective communication calls and measured its performance
on the Red Storm. The MPI collective communication calls
(based on MPICH 2.0) are implemented using a binary
reduction algorithm and executed using MPI point-to-point
operations [6]. We also investigate potential improvements in
performance that could result from using Rebenseifner’s [7]
algorithm that promises better efficiency when message
lengths of varying sizes are communicated.

Finally we also present some PAPI hardware performance

counter results. We are hoping to use these results in tuning
single processor performance and in understanding memory
access patterns of the code to evolve a single processor
performance model. We believe our analysis and code
improvements will enhance the productivity of ITS code users
and permit effective usage of new ASC capability class
machines like the Red Storm. There is a strong impetus from
DOE to push the production use of such systems to utilize
upwards of 4000 processors on a regular basis.

II. ITS CODE FLOW AND SATELLITE COMPUTATIONS
Description of the code and details on using ITS can be

found in ITS User Guide [7]. In this paper, we present a broad
outline of the computation phases and the parallelization
strategy used in ITS The interaction between particles and the
physical geometry under consideration is analyzed by tracking
particle trajectories through the geometry. Typically there is a
linear relationship between the number of particle trajectories
tracked and the execution time once the number of histories
exceeds a few thousand. The ability to conduct independent
computation of particle histories on a geometry replicated on
every processor, combined with the fact that the statistical
uncertainty in any Monte Carlo result decreases as the square

root of the number of histories makes it ideally suited for
parallel computations. While there exists particle transport
codes in which the geometry may also be distributed, like in
LLNL’s Mercury Code[8], our analysis is simplified because
ITS replicates the geometry on all the processors. The basic
computation steps are as follows: (1) the master processor
reads geometry, problem input and broadcasts to all the
worker processes; the number of histories to be computed is
divided among the processors and these in turn may be further
divided into batches to facilitate break up of computations for
convenience in getting intermediate results and keeping the
time of computations between batches correlated to the restart
dumps, (2) the worker processes perform the Monte Carlo
computations, and (3) the master performs Monte Carlo
computation and receives and tallies the data after each batch
of computations for statistical calculations and outputs the
data. Thus based on how the problem is set up we could have
many batches of computations assigned to each processor and
after completion of each batch there being a communication
operation of the tally data from the workers to the master. So
although there is no communication at all between the worker
processors, there is many-to-one communication which, based
on the algorithm used, has significant impact on the parallel
scaling characteristics.

As mentioned in the introduction this analysis was

undertaken with a satellite combinatorial geometry model.
The calculations performed for this work were adjoint point
estimation of KERMA (Kinetic Energy Released per unit
MAss). This simulation is performed by modeling only
photon physics. The adjoint solution allows numerous
radiation sources to be assessed for a single detector. In this
case, the detector was measuring energy deposition at a point
inside of an electronics box. The forward sources assessed
were infinite plane-wave sources of photons with a uniform
energy distribution between 1 and 50 keV. The average
response to these sources was calculated for 472 angular bins
of approximately equal solid angle over all 4π possible
incident directions. Figure 1 illustrates the dosage
computations where the pixels are angular bins of the source
directions and the levels are dose values at the same point on
the object.

The combinatorial-geometry (CG) model of the satellite

comprised of a total of more than 600 CG bodies. Portions of
the satellite are approximated as reduced-density materials
distributed over regions that in reality are a combination of
void and intricate geometries, but the model is among the
most complicated CG models that we have available. Within
the satellite, an electronics box is more accurately modeled
with more than 200 CG bodies. For purposes of this
investigation we focused on a scaled-speedup analysis (weak-
scaling) with 3.2 million histories assigned to each processor.

LACSI 2005; ITS

3

Figure 1. Adjoint calculations for the satellite model

assesses the directions of vulnerability

III. PERFORMANCE MODEL
The performance model for ITS parallel computation

consists of two parts: the computation time model and the
communication time model. There is a certain amount of time
spent in I/O, but for typical calculations running several hours
this turns out to be a negligible fraction of the total run time.
Following the approach taken in Ref. [4, 5] the computation
model is related to an intrinsic parameter of the computation,
which here is simply the number of particle histories, Nph .
We measure this quantity using a single processor on each
system. The computation model also depends on the
geometry and therefore such measurements must be carried
out for every geometry. For the satellite geometry the
relationship between single processor execution time and
number of histories is a linear relationship as shown in Figure
2, for the VPLANT Cluster.

From such measurements the computation time can be

calculated as:

PTNT histphcompute /∗≡

where Thist, time for a single particle history, is obtained from
the slope of the line in Figure 2. P is the number of MPI
processes taken to be equal to the number of processors.

The communication time can be modeled as:

 T tallysetupioncommunicat TT +=
Ttally refers to the worker-master communication time after
each batch of Monte Carlo computations to gather the
statistics for all the histories computed. This gather operation

in ITS was structured as a many-to-one communication
resulting in the communication time being directly
proportional to the number of processes used in the
computation.

HIGH DOSE

LOW DOSE Execution Time, secs

1

10

100

1000

0 20 40 80 160 320 640 1280

Number of Histories x 10**4

Ex
ec

ut
io

n
Ti

m
e,

 s
ec

s

infinite-extent
planar sources

Figure 2. Measurement of single processor execution time
on SNL’s VPLANT Cluster

ITS has as the option of assigning all the history computations
to the worker processes leaving the master to coordinate the
computations, this option was not used in our scaling studies.
Therefore p-1 processes serially send the tally data to the
master. The amount of data that is gathered by the master
processor is related to the output of physical quantities
requested by the analyst via the input deck and the size of
these data elements depend again on the problem under
investigation as they are related to the size of the physical
arrays. In ITS the size of most of the important physical
arrays are controlled through an include file in static fashion.
Initially in building the model, we used the VAMPIR
performance analysis tool to obtain the details of the
communication and later correlated it with MPI calls in the
code.

Figure 3. A VAMPIR summary timeline on SNL’s ICC

cluster

One could zoom into the red region in Figure 3 to gather the
communication details. For the satellite model under
consideration the details of the messages between a typical

LACSI 2005; ITS

4

 worker and the master is captured in Figure 4.

UseUs
er
co
de

Us
er
co
de

MPI_
wait_

all

MPI_
Irecv

MPI_
wait_

all

r MPII
send

ITS Parallel Efficiency, Model vs. Measured

JANUS

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Number of Processors

Pa
ra

lle
l E

ff
ic

ie
nc

y

Model, Parallel
Efficiency
Measured, Parallel
Efficiency

 48

byte
s

432
byte

s

48
byte

s

 48000
bytes

16.6M
bytes

368
byte

s

Us
er
co
de

Us
er
co
de

Us
er
co
de

MPI_recv Us
er
co
de

MPI_
Isend

 MPI_
Isend

 Figure 4. Worker-Master tally data communication calls Figure 4. Worker-Master tally data communication calls ITS Parallel Efficiency, Model vs. Measured

CPLANT

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Number of Processors

Pa
ra

lle
l E

ff
ic

ie
nc

y

Model, Parallel
Efficiency
Measured, Parallel
Efficiency

 As seen from Figure 3, the communication time for setup is a
small fraction. Therefore in our model we have chosen to
ignore it although one could build a model for it following a
similar procedure. So the analytical expression for the
communication time is:

As seen from Figure 3, the communication time for setup is a
small fraction. Therefore in our model we have chosen to
ignore it although one could build a model for it following a
similar procedure. So the analytical expression for the
communication time is:

Tcomm.= {2 * T48 + T48000 + T432 + T16M + T368 } *
num_batches * (p-1)
Tcomm.= {2 * T48 + T48000 + T432 + T16M + T368 } *
num_batches * (p-1)

Each processor at the end of a batch of computation sends to
the master a data structure coded in an 8 byte integer array
called batch_info(6) that signals the master on completion of
its task and some book keeping information such as the
execution time for that batch. The master receives the data
and using the same data structure instructs the worker process
to transmit the tally data for the physical quantities (such as
TAU, ALINE, etc in the code). The 432, 368, 48000, and
16M byte messages corresponding to the various physical
quantities are then received by the master from each worker
processor one after another in a serial fashion, from the p-1
processes.

Each processor at the end of a batch of computation sends to
the master a data structure coded in an 8 byte integer array
called batch_info(6) that signals the master on completion of
its task and some book keeping information such as the
execution time for that batch. The master receives the data
and using the same data structure instructs the worker process
to transmit the tally data for the physical quantities (such as
TAU, ALINE, etc in the code). The 432, 368, 48000, and
16M byte messages corresponding to the various physical
quantities are then received by the master from each worker
processor one after another in a serial fashion, from the p-1
processes.

ITS Parallel Efficiency, Model vs. Measured

ICC-LIBERTY

0.6
0.64
0.68
0.72
0.76

0.8
0.84
0.88
0.92
0.96

1

1 2 4 8 16 32 64 128 256

Number of Processors

Pa
ra

lle
l E

ff
ic

ie
nc

y

Model, Parallel
Efficiency
Measured, Parallel
Efficiency

 ITS Parallel Efficiency, Model vs. Measured
VPLANT

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32 64 12
8

25
6

51
2

Number of Processors

Pa
ra

lle
l E

ff
ic

ie
nc

y

Model, Parallel
Efficiency

Measured, Parallel
Efficiency

Efficiency
Rabenseifners
algorithm

To compute the different terms in the communication time
expression above, we measure the point-to-point
communication time as a function of the message size using
simple MPI benchmarks. This measured information, shown
in Table 1, on bandwidth and latency are used in the
calculation of the communication time as a function of the
number of processors and batches. The total execution time is
readily tabulated against the number of processors, from
which parallel efficiency is calculated. Figure 5 compares the
parallel efficiency obtained with our model against
performance measurements on ASCI Red (janus), CPLANT,
VPLANT and SNL’s institutional cluster – ICC-LIBERTY.

To compute the different terms in the communication time
expression above, we measure the point-to-point
communication time as a function of the message size using
simple MPI benchmarks. This measured information, shown
in Table 1, on bandwidth and latency are used in the
calculation of the communication time as a function of the
number of processors and batches. The total execution time is
readily tabulated against the number of processors, from
which parallel efficiency is calculated. Figure 5 compares the
parallel efficiency obtained with our model against
performance measurements on ASCI Red (janus), CPLANT,
VPLANT and SNL’s institutional cluster – ICC-LIBERTY.

Figure 5. Comparison of parallel efficiency; Model vs.
Measurements on ASCI Red, CPLANT, ICC, and VPLANT.

Figure 5. Comparison of parallel efficiency; Model vs.
Measurements on ASCI Red, CPLANT, ICC, and VPLANT.

 An objective of our performance modeling effort is not only

to understand performance characteristics of applications, but
An objective of our performance modeling effort is not only

to understand performance characteristics of applications, but

LACSI 2005; ITS

5

 to implement changes in algorithm that would improve
performance. Towards this end alternate implementations of
the gather phase of the computation using some binary
reduction algorithms were investigated. Thakur and Gropp[7]
discuss efficiency of various algorithms for MPI collective
operations which are now part of the MPICH release (version
1.2.6 and higher). Before we actually implemented a change
we analyzed the potential improvement in parallel efficiency
using Rebenseifner’s [8] algorithm. The expression for the
reduction operation for this algorithm is given by:

ITS Redstorm Parallel Efficiency

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000

N umber o f Processes

OLd Code M easured Apr. 08

Old Code Perf. M odel

New Code M easured-Global
Reduce

pnpnppT ionscommunicat /)1()1(2)ln(2 γβα −+−+=

Here p is the number of processors, α is the latency, β is
the message transfer time per byte and γ is the local
reduction time per byte and n is the message length. The
improved scaling that would result from implementing this
algorithm is seen in Figure 5 for the data corresponding to the
VPLANT cluster.

Figure 6. Red Storm; model and measured data showing
improved performance with the ‘new code’

IV. PAPI ANALYSIS AND SINGLE PROCESSOR TUNING
 Using the new ITS F90/F95 code we have instrumented the

code to get hardware performance counter information using
PAPI. PAPI analysis shows that ITS has only a small
percentage of the instructions that are floating point operation
operations. Moreover, the nature of the particle trajectory
computations has a lot of code branching. This seems to
suggest that proper speculative execution with profile based
compiler optimization on the Xeon, Em64T and Opteron
processors might yield some significant single processor
performance improvement. This data is presently being
collected and analyzed and the final presentation will include
further discussion on this topic.

Table 1. System parameters used in the computation model
and comparison of parallel overhead at 512 processors

System Pt-to-
pt

BW
MB/s

Pt-to-pt
Latency,

usec

Comp
time,
secs

Comm
time,
secs

Overhead,
Parallel

Efficiency,
f & (1/1+f)

Red Storm 857 7 246.92 19.44 0.078, 0.927

Janus 330 18 1673 53.20 0.03, 0.97

ICC 245 6.8 108 69 0.63, 0.61

VPLANT 209 7.9 156 83 0.53, 0.65

CPLANT 76 40 334 237 0.70, 0.58 V. CONCLUSION
 We have successfully built and used an analytical

performance model for ITS to understand it’s performance on
all of Sandia’s major computational resources. Our approach
follows closely the approach expounded by LANL’s PAL
team. The performance model and analysis has helped us to
identify bottlenecks in communication which were limiting
the scalability of this application. Along with other code
improvements we have modified the communication
algorithm permitting good scaling of this application to
O(10K) processors.

Recently we have applied the performance model to the new
ASC Red Storm[8] and used the model to predict parallel
efficiciency to 10000 processors. ITS code has also recently
undergone major rewrite to take advantage of the new
FORTRAN 90/95 features. This rewrite has created new data
structures that has facilitated investigation of the alternate
message passing scheme to replace the O(p) dependent
communication scheme to O(ln(p)) communication algorithm.
In Red Storm the currently installed MPI software based on
MPICH takes advantage of the improved collective
communication calls. So the code was modified to simply use
MPI collective operations. The results of this improvement
can be seen with measured parallel efficiency curve with the
‘new code’ in Figure 6. If the calls to MPICH collective
operations are replaced with Rabenseifner’s MPI collective
algorithm we should see further improvement in performance
as it promises to be more efficient with both long and short
messages. Measurements and models with alternate
algorithms will be included in the final presentation .

REFERENCES
[1] J.A. Halbleib, R.P. Kensek, T.A. Mehlhorn, G.D. Valdez, S.M. Seltzer,

and M.J. Berger, “ITS Version 3.0: The integrated TIGER Series of
Coupled Electron/Photon Monte Carlo Transport Codes,” Technical
Report SAND91-1634, Sandia National Laboratories, 1992.

[2] R.P. Kensek, et.al., "DTRA High Performance Computing for Testable
Hardware Initiative Final Report," Sandia National Laboratories,
SAND2001-2900 (2001).

[3] Ang, J.A, personal communications, August 2005 .
[4] Kerbyson, D.J. et.al., “ Predictive Performance and Scalability of

Modeling of a Large-Scale Application”, In the Proceeding of the

LACSI 2005; ITS

6

IEEE/ACM conference on Supercomputing Sc ‘01, Denver, CO,
October 2001

[5] M.M. Mathis, D.J. Kerbyson, A. Hoise, “A performance Model of
nondeterministic Particle Transport on Large-Scale Systems” In Future
Generation Computer Systems, To Appear 2005, LA-UR 02-7313

[6] R. Rabenseifner, “Optimization of Collective Reduction Operations”,
International Conference on Computational Science, June 7-9, Krakow,
Poland, LCNS, Springer-Verlag, 2004.

[7] M. O'Brien, J. Taylor, R. Procassini, "Dynamic Load Balancing of
Parallel Monte Carlo Transport Calculations," The Monte Carlo
Method: Versatility Unbounded In A Dynamic Computing World,
Chattanooga, Tennessee, April 17–21, 2005, on CD-ROM, American
Nuclear Society, LaGrange Park, IL (2005)

[8] Hoise, et.al., “An initial Performance Analysis of the Red Storm
Architecture” LANL PAL on-line distribution March 14, 2005

	INTRODUCTION
	ITS code flow and satellite computations
	Performance Model
	PAPI analysis and Single processor tuning
	Conclusion
	Home
	TOC
	Go Back

