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Abstract— ITS is a powerful and user-friendly software 

package permitting state-of-the-art Monte Carlo solution of 
linear time-independent coupled electron/photon radiation 
transport problems, with or without the presence of macroscopic 
electric and magnetic fields of arbitrary spatial dependence.  As 
one of a few Sandia applications that are targeted for capability 
class machines like the ASC Red Storm, we have studied 
extensively the performance of this application using thousands 
of processors.  We have successfully constructed a performance 
model and verified the model against measurements on a variety 
of Sandia compute platforms.  Use of tools like VAMPIR and 
PAPI in performance analysis and modeling is discussed.   The 
original algorithm for computing the statistical quantities after 
each batch of Monte-Carlo computations has been modified to 
yield improved parallel scaling.  Models of alternate message 
passing algorithms are investigated and validated against 
measurements on the Red Storm. 
 

Index Terms—Performance modeling, performance analysis, 
Monte Carlo Radiation Transport 
 

I. INTRODUCTION 

T HE INTEGRATED TIGER SERIES (ITS)  code is an evolving 
Monte Carlo radiation transport code that has been used 

extensively in weapon-effect simulator design and analysis, 
radiation dosimetry, radiation effect studies and medical 
physics research.  Many individuals from the DOE labs and 
NIST have been involved over the years in the development 
and enhancement of ITS [1].  The different features/sections 
of the code in ITS: TIGER, MITS, CEPXS, XGEN etc., are 
applied to an analysis under investigation through the 
selection of appropriate pre-processor directives when the 
code is built.  Physical rigor for the analysis is provided by 
employing accurate cross sections, sampling distributions, and 
physical models for describing the production and transport of 
the electron/photon cascade from 1.0 GeV down to 1.0 keV.  
The ITS code is capable of analyzing particle transport 

through both  combinatorial geometry models and CAD 
models.  It also has been significantly enhanced to permit 
adjoint transport calculations.    

For the purposes of this paper we have analyzed the 
performance using as input, data from a real satellite model.  
The physical problem solved takes advantage of the MITS 
mutli-group/continuous energy electron-photon Monte Carlo 
transport code’s capability to address realistic three-
dimensional adjoint computations.  The adjoint transport 
method is a powerful technique for simulating applications 
where the knowledge of the particle flux is only required for a 
restricted region of the phase space, but where this knowledge 
is required for source parameters spanning a large region of 
phase space.  The run times for simulations for a complex 
combinatorial geometry model using conventional, or 
forward, transport are prohibitive and hence the adjoint 
calculations used in our satellite model [2].    
 

Our performance analysis of the ITS code was initially 
spurred by the JASONs and NAS review of the ASC 
programs to assess mapping of a set of DOE applications to 
architectures.  Another reason for this investigation is because 
of the large percentage of compute resources ITS code users 
had consumed in the previous years and anticipated similar 
usage in the future.  Recently we investigated the scaling 
characteristics of ITS to tens of thousands of processors.  
Execution time measurements have been obtained on various 
platforms at SNL; ASCI Red, VPLANT (2.4 GHz Xeon 
cluster with Myrinet), ICC (institutional cluster: 3 GHz Xeon 
with Myrinet), CPLANT (Alpha cluster with Myrinet) and 
more recently on the Red Storm.  Our performance model 
attempts to follow a similar approach to that expounded by 
Kerbyson, et.al [4] and in fact follows closely the model 
presented by Mathis, Kerbyson and Hoise [5] in their analysis 
of the MCNP particle transport code.  The model develops an 
analytical expression for the major portions of the execution 
time, namely, computation, communication and I/O.  At the 
present time our expression for the compute time is obtained 
by curve-fitting the plot of the measured execution time vs. 
the number of histories.  For the communication time model 
we focused on the communications at the end of each batch of 
computations assigned to the processors.  This was 
accomplished with the VAMPIR tracing tool to obtain the 
message sizes and messaging patterns and later correlated to 
the MPI calls in the code.  For the compute platform 
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communication characteristics such as bandwidth and latency, 
a set of simple benchmarks were run. The I/O time typically 
been a fraction less than 3% and at the present no model has 
been investigated. 
 

In this paper we present the details of the model and 
compare measured performance against the model for 
different architectures.  We also present results of tests on the 
new ASC Red Storm and use the model to predict 
performance on it to 10,000 processors.  The ITS code has 
been recently enhanced to introduce Fortran 90/95 features 
and in the process it has also implemented changes in data 
structures that would improve performance.  As will be seen 
from the scaling plots presented below, ITS can suffer a 
scaling performance penalty depending on how the history 
computations are split among the participating processors and 
the frequency with which the statistical tally of the 
computations are assembled by the master process.  This 
performance penalty, due to communication cost incurred in 
the many-to-one communication at the end of each batch of 
computation, has been remedied by a modified algorithm.  We 
have investigated a simple implementation using MPI 
collective communication calls and measured its performance 
on the Red Storm.  The MPI collective communication calls 
(based on MPICH 2.0) are implemented using a binary 
reduction algorithm and executed using MPI point-to-point 
operations [6].  We also investigate potential improvements in 
performance that could result from using Rebenseifner’s [7] 
algorithm that promises better efficiency when message 
lengths of varying sizes are communicated. 

 
Finally we also present some PAPI hardware performance 

counter results.  We are hoping to use these results in tuning 
single processor performance and in understanding memory 
access patterns of the code to evolve a single processor 
performance model.  We believe our analysis and code 
improvements will enhance the productivity of ITS code users 
and permit effective usage of new ASC capability class 
machines like the Red Storm. There is a strong impetus from 
DOE to push the production use of such systems to utilize 
upwards of 4000 processors on a regular basis.   

II. ITS CODE FLOW AND SATELLITE COMPUTATIONS 
Description of the code and details on using ITS can be 

found in ITS User Guide [7]. In this paper, we present a broad 
outline of the computation phases and the parallelization 
strategy used in ITS  The interaction between particles and the 
physical geometry under consideration is analyzed by tracking 
particle trajectories through the geometry.  Typically there is a 
linear relationship between the number of particle trajectories 
tracked and the execution time once the number of histories 
exceeds a few thousand.  The ability to conduct independent 
computation of particle histories on a geometry replicated on 
every processor, combined with the fact that the statistical 
uncertainty in any Monte Carlo result decreases as the square 

root of the number of histories makes it ideally suited for 
parallel computations.  While there exists particle transport 
codes in which the geometry may also be distributed, like in 
LLNL’s Mercury Code[8], our analysis is simplified because 
ITS replicates the geometry on all the processors.   The basic 
computation steps are as follows: (1) the master processor 
reads geometry, problem input and broadcasts to all the 
worker processes;  the number of histories to be computed is 
divided among the processors and these in turn may be further 
divided into batches to facilitate break up of computations for 
convenience in getting intermediate results and keeping the 
time of computations between batches correlated to the restart 
dumps, (2) the worker processes perform the Monte Carlo 
computations, and (3) the master performs Monte Carlo 
computation and receives and tallies the data after each batch 
of computations for statistical calculations and outputs the 
data.  Thus based on how the problem is set up we could have 
many batches of computations assigned to each processor and 
after completion of each batch there being a communication 
operation of the tally data from the workers to the master.  So 
although there is no communication at all between the worker 
processors, there is many-to-one communication which, based 
on the algorithm used, has significant impact on the parallel 
scaling characteristics.  

 
As mentioned in the introduction this analysis was 

undertaken with a satellite combinatorial geometry model.  
The calculations performed for this work were adjoint point 
estimation of KERMA (Kinetic Energy Released per unit 
MAss).  This simulation is performed by modeling only 
photon physics.  The adjoint solution allows numerous 
radiation sources to be assessed for a single detector.  In this 
case, the detector was measuring energy deposition at a point 
inside of an electronics box.  The forward sources assessed 
were infinite plane-wave sources of photons with a uniform 
energy distribution between 1 and 50 keV.  The average 
response to these sources was calculated for 472 angular bins 
of approximately equal solid angle over all 4π possible 
incident directions.  Figure 1 illustrates the dosage 
computations where the pixels are angular bins of the source 
directions and the levels are dose values at the same point on 
the object. 

 
The combinatorial-geometry (CG) model of the satellite 

comprised of a total of more than 600 CG bodies.  Portions of 
the satellite are approximated as reduced-density materials 
distributed over regions that in reality are a combination of 
void and intricate geometries, but the model is among the 
most complicated CG models that we have available.  Within 
the satellite, an electronics box is more accurately modeled 
with more than 200 CG bodies.  For purposes of this 
investigation we focused on a scaled-speedup analysis (weak-
scaling) with 3.2 million histories assigned to each processor.   
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Figure 1.  Adjoint calculations for the satellite model 

assesses the directions of vulnerability 

III. PERFORMANCE MODEL 
The performance model for ITS parallel computation 

consists of two parts: the computation time model and the 
communication time model.  There is a certain amount of time 
spent in I/O, but for typical calculations running several hours 
this turns out to be a negligible fraction of the total run time.  
Following the approach taken in Ref. [4, 5] the computation 
model is related to an intrinsic parameter of the computation, 
which here is simply the number of particle histories, Nph .  
We measure this quantity using a single processor on each 
system.   The computation model also depends on the 
geometry and therefore such measurements must be carried 
out for every geometry.  For the satellite geometry the 
relationship between single processor execution time and 
number of histories is a linear relationship as shown in Figure 
2, for the VPLANT Cluster. 

 
From such measurements the computation time can be 

calculated as: 
 

PTNT histphcompute /∗≡  

 
where Thist, time for a single particle history, is obtained from 
the slope of the line in Figure 2.  P is the number of MPI 
processes taken to be equal to the number of processors. 
 

The communication time can be modeled as: 
 
        T  tallysetupioncommunicat TT +=
Ttally refers to the worker-master communication time after 
each batch of Monte Carlo computations to gather the 
statistics for all the histories computed.  This gather operation 

in ITS was structured as a many-to-one communication 
resulting in the communication time being directly 
proportional to the number of processes used in the 
computation.  
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Figure 2. Measurement of single processor execution time 
on SNL’s VPLANT Cluster  

 
ITS has as the option of assigning all the history computations 
to the worker processes leaving the master to coordinate the 
computations, this option was not used in our scaling studies.  
Therefore p-1 processes serially send the tally data to the 
master.  The amount of data that is gathered by the master 
processor is related to the output of physical quantities 
requested by the analyst via the input deck and the size of 
these data elements depend again on the problem under 
investigation as they are related to the size of the physical 
arrays.  In ITS the size of most of the important physical 
arrays are controlled through an include file in static fashion.  
Initially in building the model, we used the VAMPIR 
performance analysis tool to obtain the details of the 
communication and later correlated it with MPI calls in the 
code.   
 

 
Figure 3. A VAMPIR summary timeline on SNL’s ICC 

cluster 
 
One could zoom into the red region in Figure 3 to gather the 
communication details.  For the satellite model under 
consideration the details of the messages between a typical 
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  worker and the master is captured in Figure 4.     
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       Figure 4.  Worker-Master tally data communication calls Figure 4.  Worker-Master tally data communication calls     ITS Parallel Efficiency, Model vs. Measured
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  As seen from Figure 3, the communication time for setup is a 
small fraction.  Therefore in our model we have chosen to 
ignore it although one could build a model for it following a 
similar procedure.  So the analytical expression for the 
communication time is: 

As seen from Figure 3, the communication time for setup is a 
small fraction.  Therefore in our model we have chosen to 
ignore it although one could build a model for it following a 
similar procedure.  So the analytical expression for the 
communication time is: 

  
  
  
  
      

Tcomm.= {2 * T48 + T48000 + T432 + T16M + T368 } * 
num_batches * (p-1) 
Tcomm.= {2 * T48 + T48000 + T432 + T16M + T368 } * 
num_batches * (p-1) 

  
  

    
Each processor at the end of a batch of computation sends to 
the master a data structure coded in an 8 byte integer array 
called batch_info(6) that signals the master on completion of 
its task and some book keeping information such as the 
execution time for that batch.  The master receives the data 
and using the same data structure instructs the worker process 
to transmit the tally data for the physical quantities ( such as 
TAU, ALINE, etc in the code).  The 432, 368, 48000, and 
16M byte messages corresponding to the various physical 
quantities are then received by the master from each worker 
processor one after another in a serial fashion, from the p-1 
processes. 

Each processor at the end of a batch of computation sends to 
the master a data structure coded in an 8 byte integer array 
called batch_info(6) that signals the master on completion of 
its task and some book keeping information such as the 
execution time for that batch.  The master receives the data 
and using the same data structure instructs the worker process 
to transmit the tally data for the physical quantities ( such as 
TAU, ALINE, etc in the code).  The 432, 368, 48000, and 
16M byte messages corresponding to the various physical 
quantities are then received by the master from each worker 
processor one after another in a serial fashion, from the p-1 
processes. 

  
ITS Parallel Efficiency, Model vs. Measured
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To compute the different terms in the communication time 
expression above, we measure the point-to-point 
communication time as a function of the message size using 
simple MPI benchmarks.  This measured information, shown 
in Table 1, on bandwidth and latency are used in the 
calculation of the communication time as a function of the 
number of processors and batches.  The total execution time is 
readily tabulated against the number of processors, from 
which parallel efficiency is calculated.  Figure 5 compares the 
parallel efficiency obtained with our model against 
performance measurements on ASCI Red (janus), CPLANT, 
VPLANT and SNL’s institutional cluster – ICC-LIBERTY. 

To compute the different terms in the communication time 
expression above, we measure the point-to-point 
communication time as a function of the message size using 
simple MPI benchmarks.  This measured information, shown 
in Table 1, on bandwidth and latency are used in the 
calculation of the communication time as a function of the 
number of processors and batches.  The total execution time is 
readily tabulated against the number of processors, from 
which parallel efficiency is calculated.  Figure 5 compares the 
parallel efficiency obtained with our model against 
performance measurements on ASCI Red (janus), CPLANT, 
VPLANT and SNL’s institutional cluster – ICC-LIBERTY. 

  
  
  
  
  
  
  
  
  
  
  

Figure 5.  Comparison of  parallel efficiency; Model vs. 
Measurements on ASCI Red, CPLANT, ICC, and VPLANT. 

Figure 5.  Comparison of  parallel efficiency; Model vs. 
Measurements on ASCI Red, CPLANT, ICC, and VPLANT.   

    
  An objective of our performance modeling effort is not only 

to understand performance characteristics of applications, but 
An objective of our performance modeling effort is not only 

to understand performance characteristics of applications, but   
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 to implement changes in algorithm that would improve 
performance.  Towards this end alternate implementations of 
the gather phase of the computation using some binary 
reduction algorithms were investigated.  Thakur and Gropp[7] 
discuss efficiency of various algorithms for MPI collective 
operations which are now part of the MPICH release (version 
1.2.6 and higher).  Before we actually implemented a change 
we analyzed the potential improvement in parallel efficiency 
using Rebenseifner’s [8] algorithm.  The expression for the 
reduction operation for this algorithm is given by: 
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pnpnppT ionscommunicat /)1()1(2)ln(2 γβα −+−+=   

 
Here p is the number of processors,   α is the latency, β is 
the message transfer time per byte and γ  is the local 
reduction time per byte and n is the message length.  The 
improved scaling that would result from implementing this 
algorithm is seen in Figure 5 for the data corresponding to the 
VPLANT cluster. 

Figure 6. Red Storm; model and measured data showing 
improved performance with the ‘new code’ 

IV. PAPI ANALYSIS AND SINGLE PROCESSOR TUNING 
 Using the new ITS F90/F95 code we have instrumented the 

code to get hardware performance counter information using 
PAPI.  PAPI analysis shows that ITS has only a small 
percentage of the instructions that are floating point operation 
operations.  Moreover, the nature of the particle trajectory 
computations has a lot of code branching.  This seems to 
suggest that proper speculative execution with profile based 
compiler optimization on the Xeon, Em64T and Opteron 
processors might yield some significant single processor 
performance improvement.  This data is presently being 
collected and analyzed and the final presentation will include 
further discussion on this topic.   

Table 1. System parameters used in the computation model 
and comparison of parallel overhead at 512 processors 

System Pt-to-
pt 

BW 
MB/s 

Pt-to-pt 
Latency, 

usec 

Comp 
time, 
secs 

Comm 
time, 
secs 

Overhead, 
Parallel 

Efficiency, 
f & (1/1+f) 

Red Storm 857 7 246.92 19.44 0.078, 0.927

Janus 330 18 1673 53.20 0.03, 0.97 

ICC 245 6.8 108 69 0.63, 0.61 

VPLANT 209 7.9 156 83 0.53, 0.65 

CPLANT 76 40 334 237 0.70, 0.58 V. CONCLUSION 
 We have successfully built and used an analytical 

performance model for ITS to understand it’s performance on 
all of Sandia’s major computational resources.  Our approach 
follows closely the approach expounded by LANL’s PAL 
team.  The performance model and analysis has helped us to 
identify bottlenecks in communication which were limiting 
the scalability of this application.  Along with other code 
improvements we have modified the communication 
algorithm permitting good scaling of this application to 
O(10K) processors.    

Recently we have applied the performance model to the new 
ASC Red Storm[8] and used the model to predict parallel 
efficiciency to 10000 processors.  ITS code has also recently 
undergone major rewrite to take advantage of the new 
FORTRAN 90/95 features.  This rewrite has created new data 
structures that has facilitated investigation of the alternate 
message passing scheme to replace the O(p) dependent 
communication scheme to O(ln(p)) communication algorithm.  
In Red Storm the currently installed MPI software based on 
MPICH takes advantage of the improved collective 
communication calls.  So the code was modified to simply use 
MPI collective operations.  The results of this improvement 
can be seen with measured parallel efficiency curve with the 
‘new code’ in Figure 6.   If the calls to MPICH collective 
operations are replaced with Rabenseifner’s MPI collective 
algorithm we should see further improvement in performance 
as it promises to be more efficient with both long and short 
messages.  Measurements and models with alternate 
algorithms will be included in the final presentation .   
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