
Baker 1LACSI 2005

Architectures for Efficient Data Mining

Zachary Baker and Viktor K. Prasanna
University of Southern California

10-11-2005

Baker 2LACSI 2005

Outline

• Background
– Our work
– FPGAs for acceleration

• Introduction to Data Mining
– Apriori algorithm

• Architectures for the Apriori algorithm
– Systolic array for candidate generation
– Bitmapped CAM for faster support calculation

• Results
• Conclusion and future work

Baker 3LACSI 2005

Introduction to Apriori Algorithm

Baker 4LACSI 2005

Data Mining

• Used in Intrusion Detection and other fields for inferring
links between otherwise unconnected elements of large
data sets
– Packet classification: autonomous identification of attack signatures
– Ralph’s club cards

• Apriori algorithm (R. Agrawal and T. Imielinski and A.
Swami, 1993)

• Based on multiple passes of the entire dataset
– Inferred connections are built up on each pass
– Set operations key to the kernel

Baker 5LACSI 2005

Correlation Mining Example

• Frequent singletons: bananas, cereal, milk, beer, chips
– Frequent 2-itemsets:

• bananas, cereal
• bananas, milk
• cereal, milk
• beer, chips

– Frequent 3-itemsets
• bananas, cereal, milk

Baker 6LACSI 2005

Elements of the Apriori Algorithm

• Initial Frequent Itemsets: common singletons
• Candidate Generation: generate new candidates by

adding one element each generation
• Candidate Pruning: Remove all new candidate items that

do not fulfill set requirements
• Support calculation: Stream database past candidates

and determine frequency of occurrence of each candidate

Initial

Frequent

Itemsets

Candidate

Generation

Candidate

Pruning

Support

Calculation

Baker 7LACSI 2005

Set Operations: Support

• The candidate sets are kept in local memory
• Transaction database is streamed past

– Candidates have to see all transaction elements
– Can require multiple passes if there are more candidates

than systolic units
– Requires much of the total time due to size of database

Baker 8LACSI 2005

Set Operations: Candidate Gen

• Candidate generation:
– When subset operation is satisfied, one element is

appended to end of streaming set (requires injection)

Baker 9LACSI 2005

Apriori Basics

A 200

F 250

K 5

N 220

A F

A N

A P

P 245

F N

F P

N P

130

Item Support Item Support

124

187

140

34

45

A F

A F

A N

45

Item Support

20

34

N

P

P

Generation 1 Generation 2 Generation 3

Baker 10LACSI 2005

Apriori Architecture

Baker 11LACSI 2005

Data mining

• Set operations central to data mining kernel
• Efficiently implemented using systolic array

Item In

Mode in

 Stall Out

 Item Out

C
o

n
tr

o
lle

r Item

Buffer

(stall)

Support Counter

Set Comparator

Local

Mem

Controller

Item

Buffer

(stall)

Support Counter

Set Comparator

Local

Mem

Controller

Item

Buffer

(stall)

Support Counter

Set Comparator

Local

Mem

Controller
 Stall In

Baker 12LACSI 2005

Set Operations: Support

• One set is kept in local memory, larger set is streamed
past
– Candidate item stored in memory
– Reaching the end of the set memory implies subset satisfaction

Candidate

Itemsets

Transaction Items In

Delay

0
1

2

m-2
m-1

. . .

Index

Pointer
If(max)

D

=

Transaction Items In

Support

Counter

Support Out

ENABLE

INCREMENT

ENABLE

INCREMENT

Baker 13LACSI 2005

Support on Sequential Machines

• Uniprocessor Implementations
– Entire candidate set is entered in a single tree

• Essentially parallel lookup of all candidates
– Tree is traversed for all k-subsets of each transaction

• n = 40, k = 16 --- 40 choose 16 traversals if far more expensive
than the 40 cycles required in the single pass hardware case

Baker 14LACSI 2005

Systolic Injection

• Key to efficiency
– add entries to input stream

• no delay for downstream units
• upstream units are stalled by only one cycle

– candidate set is finished, result is appended as suffix
• Overall number of cycles: number of data elements + number of results

Install stallmem Generate Outstall stallmem*

0 0 0 0 0

0 0 1 1 0

1 0 0 1 0

0 1 d 1 0

1 0 1 1 1

1 1 d 1 1

• If stallmem is active, the system is prevented from generating a result

Baker 15LACSI 2005

It
e

m
 3

It
e

m
 2

It
e

m
 1

Stall

It
e

m
 4

It
e

m
 3

It
e

m
 1

C

y
c
le

 c

C
y
c
le

 c
+

1

R
e

s
u

lt

R
e

s
u

lt

Item 2 Not

accepted

Stall causes hold,

generation of result

activates stall_mem

It
e

m
 5

It
e

m
 3

R
e

s
u

lt

It
e

m
 4

C

y
c
le

 c
+

2

It
e

m
 2

Item 4 Not accepted
Stall
R

e
s
u

lt

stall_mem

It
e

m
 5

It
e

m
 2

It
e

m
 4

R
e

s
u

lt
Item 4 Not accepted

Stall

It
e

m
 3

stall_mem

C

y
c
le

 c
+

3

Stage 1 Stage 2 Stage 3

R
e

s
u

lt

It
e

m
 2

Baker 16LACSI 2005

One Stall

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7s 8

0 1 2 3 4 56s i 7 8

0 1 2 34s 5 6 i 7 8

0 12s 3 4 5 6 i 7 8

0s 1 2 3 4 5 6 i 7 8

0 1 2 3 4 5 6 i 7 8

Baker 17LACSI 2005

Two Stalls Colliding

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7s

0 1 2 3 4 56s i 7

0 1 2 34s2 5 6 i 7

0 12s2 i3s 4 5 6 i 7

0s2 12s 3s i 4 5 6 i 7

0s 1 2 3 i 4 5 6 i 7

0 1 2 3 i 4 5 6 i 7

0 1 2 3 i 4 5 6 i 7

Baker 18LACSI 2005

Bitmapped CAM Architecture
(new work to be submitted to IPDPS)

Baker 19LACSI 2005

Predecoding in CAM

• Idea from string matching – reduce number of expensive
comparators and routing through the grouping of a small
number of heavily used elements

249 316 395 482 743 787 819
236 249 395 482 743 787 819
249 316 395 482 743 787 804
236 249 395 482 743 787 804
236 249 316 395 482 743 787
249 319 482 620 743 787 819
249 482 620 743 787 804 819
249 316 482 620 743 787 819
236 249 482 620 743 787 819
249 482 529 620 743 787 819
249 319 482 620 743 787 804

Baker 20LACSI 2005

Predecoding Architecture

• CAM entries detect a particular item code
• Bitmap keeps track of which candidates need a given item
• Counters determine if all candidate items have been found

C
A

M
 a

rr
a

y

shift

data_in

e
n

c
o

d
e

r

bitmap ram

counter 0 ... counter 15

...

...

min >>

Baker 21LACSI 2005

Bitmap Illustration

• Bitmap is computed and
optimized by external controller

• Bitmap hold information for 16
candidates and 32 different
item codes
– Number of candidates is

reduced if too many item codes
are required (rare)

1

1

1 1

1 1

1

1

1...
...

...
...

1 1 11...

addr

one bitmap

for each

item code

in block

Baker 22LACSI 2005

SRC-6 Implementation

• 16 bits per cycle (100 MHz) easy to provide from memory
• Coded in SRC Carte-C

– Not as much control as VHDL
– Compiler takes care of the more complicated memory issues
– Bitmapped CAM blocks replicated across two Virtex 2 6000 –4

Baker 23LACSI 2005

Results

Baker 24LACSI 2005

Results

• Based on standard data mining benchmark databases
– T40I10D100K (15 MB) : average candidate size is 40
– T10I4D100k (4 MB): average candidate size is 10

• Result comparisons based on tests published in Bodon ‘03

Baker 25LACSI 2005

Current Data Mining Results

• T40I10D100K (15 MB) Chart: higher average number of elements in
transactions causes more candidates to satisfy support requirements

0

0.5

1

1.5

2

2.5

3

0.0085 0.009 0.01 0.02 0.03 0.05

Support

lo
g
(t
im
e
(s
e
c
))

USC Bitmapped CAM

USC FCCM05

Bodon

Borgelt

Goethals

Baker 26LACSI 2005

Initial Datamining Results

• T10I4D100k (4 MB): due to size of database, FPGA running time is
essentially proportional to number of candidates

0

1

2

3

4

5

6

0.0015 0.002 0.003 0.005 0.01 0.05

Support

lo
g
(t
im
e
(m
s
e
c
))

USC Bitmapped CAM

USC FCCM05

Bodon

Borgelt

Goethals

Baker 27LACSI 2005

Initial Data Mining Results

• Systolic architecture
– 560 units on a single V2P100, operating at 125 MHz
– Number of passes of database is reduced by large number of units
– Systolic performance (conservative) beats dual Xeon 3-GHz system by 4x

(16 MB dataset requires 95 seconds)
• Bitmapped CAM architecture

– 1400 units on a single V2P100, operating at 135 MHz
– About 3x higher performance compared to systolic architecture
– Implemented on SRC6 FPGA accelerated workstation

Baker 28LACSI 2005

Future Work

• Port to SRC-7
– Use of a custom macro in lieu of Carte-C implementation

• No support for custom bit widths
• Timing for systolic array requires precise designer control

• Mode-specific reconfiguration for candidate generation
and support operations
– Full application implemented on SRC machine

