The Design and Applications of BEE2: A High End Reconfigurable Computing System

Chen Chang, John Wawrzynek, Bob Brodersen, EECS, University of California at Berkeley
Outline

• Motivations for High End Reconfigurable Computing
• BEE2 system
 – Hardware architecture
 – Programming environment
• Demonstration applications
 – SETI billion channel spectrometer
 – Antenna array correlator
• Current status
High-End Reconfigurable Computer (HERC)

- A computer with supercomputer-like performance, based solely on FPGAs and/or other reconfigurable devices as the processing elements.
- Based on concepts demonstrated in BEE2 prototype, 1 petaOPS (10^{15}) in 1 cubic meter attainable within 3 years.
Applications Areas of Interest

• High-performance DSP
 – SETI Spectroscopy, ATA / SKA Image Formation
 – Hyper-spectral Image Processing (DARPA)
• Scientific computation and simulation
 – E & M simulation for antenna design (BWRC)
 – Fusion simulation (UW)
• Communication systems development Platform
 – Algorithms for SDR and Cognitive radio
 – Large wireless Ad-Hoc sensor networks
 – In-the-loop emulation of SOCs and Reconfigurable Architectures
• Bioinformatics
 – BLAST (Basic Local Alignment Search Tool) biosequence alignment
 – Molecular Dynamics (Drug discovery)
• System design acceleration
 – Full Chip Transistor-Level Circuit Simulation (Xilinx)
 – RAMP (Research Accelerator for MultiProcessing)
Radio Astronomy (1MHz~500GHz)

Electromagnetic Spectrum

- Radio Waves
- Infrared
- Ultraviolet
- Xrays
- Gamma Rays

Colliding black holes

Radio jets

Image courtesy of NRAO/AUI

October 11th, 2005
EECS, UC Berkeley
Large-N, Small-D Concept

- Use lots of small diameter antennas to achieve large aggregate collecting area
 - Extremely high quality coverage
 - Very wide range of baseline lengths
 - Flexible usage model, multi-user, multi-subarrays
 - Reliability through redundancy
 - Economy of scale

Cost ($)

Antenna Steel Cost Dominate

Compute Hardware Cost Dominate

Moore's Law

Antenna diameter
Problems with existing approach

- All specialized instrument design
 - Separate PCB for each subsystem, dedicated functionality
 - Custom interconnect, backplane, and memory interface
 - Fully global synchronous I/O and processing
 - Clock distribution, power consumption, and voltage regulation
- Each instrument design cycle is 5 years!!!
- Instrument upgrade takes the similar effort as designing a new product
BEE2 system design philosophy

• Compute-by-the-yard
 – Modular computing resource
 – Flexible interconnect architecture
 – On-demand reconfiguration of computing resources

• Economy-of-scale
 – Ride the semiconductor industry Moore’s Law curve
 – All COTS components, no specialized hardware
 – Survival of application software using technology independent design flow
BEE2 compute module
Compute Module Diagram

IB4X/CX4 40Gbps

5 FPGA
2VP70FF1704

IB4X/CX4 20Gbps

100BT Ethernet

4GB DDR2 DRAM
12.8GB/s (400DDR)

IB4X/CX4 40Gbps

138 bits 300MHz DDR 41.4Gb/s

IB4X/CX4 40Gbps
Inter-Module Connections

Global Communication Tree

Compute module

N-modules

Compute module

NAS

Stream Packets

10G Ethernet Switch

Admin, UI, NFS

100 Base-T Ethernet Switch

October 11th, 2005 EECS, UC Berkeley
19” Rack Cabin Capacity

- 40 compute nodes in 5 chassis (8U) per rack
- ~40TeraOPS, ~1.5TeraFLOPS
- 150 Watt AC/DC power supply to each blade
- ~6 Kwatt power consumption
- Hardware cost: ~ $500K
BEE2 A/D interface overview

- Use iBOB to fanout the 10G IB4X serial connections to parallel LVDS/LVPEL signals
- iBOB can be connected to BEE2 modules or directly to Infiniband or 10GE switches
- Built-in support to connect to the Mark-V disk array archiver
2 Dual 1Gbps ADC board

IP Break-Out Board (iBOB)
BEE2 Design Environment

- Layered design abstractions
- Platform-based hardware abstraction
- Discrete-time data flow execution model
- Script-based dynamic application library generation
- Hardware/software codesign with full system integration
BEE Platform Studio (BPS)

• BEE Platform Studio 1.1
 – Simulink library support for system devices
 – Full SoC generation include software integration
 – Simple GUI in Matlab
 – Require no knowledge of backend tool flow from end users

• Backend commercial tools
 – Xilinx ISE 7.1i SP4
 – Xilinx EDK 7.1i sp2
 – Xilinx System Generator 7.1i
 – Synplicity Synplify Pro 8.1
BPS design example
SETI Billion Channel Spectrometer

- 0.7Hz channels over 800MHz → 1 billion Channel real-time spectrometer
- Implemented on 1 BEE2 module and yields 333GOPS (16-bit mults, 32-bit adds), at 150Watts (similar to desk-top computer)
- >100x peak throughput of current Pentium-4 system on integer performance, & >100x better throughput per energy.
JPL/SETI Galactic Plane Sky Survey
Antenna array correlation basics

- FX correlator is orders of magnitude more computationally efficient
N-antenna correlator overview

For 350 antenna, each 100MHz bandwidth require over 100 TOPS compute throughput
Frequency transform
XMAC implementation
Crossbar switch implementation

- For small number of antennas (N<16)
 - Frame based circuit switching using BEE2 module internal resources
- For large number of antennas (N>16)
 - Packet switching using commercial 10G Ethernet switches

<table>
<thead>
<tr>
<th>Frequency Transform Outputs</th>
<th>Switch</th>
<th>XMAC inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0F1</td>
<td>A0F2</td>
<td>A0F3</td>
</tr>
<tr>
<td>A1F2</td>
<td>A1F3</td>
<td>A1F0</td>
</tr>
<tr>
<td>A2F3</td>
<td>A2F0</td>
<td>A2F1</td>
</tr>
<tr>
<td>A3F0</td>
<td>A3F1</td>
<td>A3F2</td>
</tr>
<tr>
<td>T=3</td>
<td>T=2</td>
<td>T=1</td>
</tr>
</tbody>
</table>
200MHz 4 antenna correlator on a single iBOB
Field test at CARMA
Project status

• 10 node system manufacturing (10/2005)
• Demonstration applications:
 – NASA DSN 128M channel spectrometer (8/2005)
 – 1GHz portable real-time spectrometer (10/2005)
 – VLBI 1GHz spectrum data recorder (12/2005)
 – 8 antenna 200MHz dual polarization correlator (12/2005)