
FPGA-Based High-Order Finite Difference Method
for Linear Wave Modelling Problems

Chuan He, Guan Qin, Wei Zhao
Institute for Scientific Computation

Texas A&M University

http://research.cs.tamu.edu/realtime/

FD-based Wave Equations Modeling on RC Platform

Content:

• linear wave equations

• Conventional FD-based wave modeling problems

• FPGA-based FD computing engine

• Sliding window buffering structure

• Simulation results

Linear wave equations in isotropic and
inhomogeneous media

• Hyperbolic Partial Differential Equations

• Linear: the amplitude of two interacting waves is simply their
summations.

• Isotropic: parameters of media are independent of directions

• Inhomogeneous: parameters are dependent of the position.

• Two kinds of problems: Forwarding and Reverse

• Transient wave phenomenon: Transmission, Reflection,
diffraction, Dispersion, Dissipation, etc.

• Application Fields: Aero- or marine-acoustics,
Electromagnetics, Geophysics,, etc.

Linear wave equations in first/second derivative forms
• Acoustic wave equations:

• Maxwell’s equations :

• Elastic wave equations :

The standard second-order FD scheme for 2D
acoustic wave equations: A case study

• Scalar acoustic wave equation:

• The standard (2, 2) FD scheme:

 where

• Seven pressure and velocity values are needed to update
pressure fields at one grid point for one time-marching step.

• Eleven Floating-point computations. (2X operations are not
counted in.)

• Computationally demanding and data-intensive.

Numerical errors of FD approximations

• Approximation errors arise from both temporal and spatial
discritizations.

• Numerical dispersion, dissipation and anisotropy, etc.

• Numerical errors cause wave components propagating in slower
speeds, damped amplitudes, or wrong directions in simulations
than in the reality.

• Accumulate quickly and destroy the initial shape of wavelets.

• Decreasing sampling interval alleviates this problem. But leads
to more grid points.

• To simulate a wavelet in an area of 10 X its wavelength, (2, 2)
FD scheme requires at least 200-point along each spatial axis
for realistic simulation problems.

• An effective method is to adopt high-order FD schemes.

High-order FD approximations in space

• Approximate to (2m) accurate order

 where

• More operands and more computations

• Much smaller numerical errors.

• Simulate Large area with moderate spatial resolution.

• Enlarge spatial sampling interval to reduce the total number of
discrete points

Stencils of high-order FD schemes in 2D space

3519117Total Operands

56322010Total FP
Operations

(2, 16)(2, 8)(2, 4)(2, 2)FD Schemes

Dispersion relation of different FD schemes

Shortages of High-order FD approximations

• More computations per grid.

• More operands involved.

• Hard to construct effective high-order ABC or PML.

• Not suitable for abrupt discontinuous media.

• People tend to be conservative in enlarging sampling interval

Results:

• The decrement of spatial points achieved by high-order FD
approximations seems not enough to compensate extra
computations they introduced.

• Are commonly slower than low-order schemes and not widely
used in reality.

High-order FD schemes on RC platform

• Customized computing engine with tens to hundreds of FP
arithmetic units

• Multiple independent external memory controllers provide wider
external memory bandwidth.

• Abundant internal RAM blocks working as data cache or buffer

• Programmable internal routing paths Leads to better caching
behavior and data reusability.

• Fine-grain parallelism makes it an effective complement to
prevailing PC-cluster systems

Function blocks and data flow for (2, 2) FD scheme

Function blocks and data flow for (2, 4) FD scheme

Sliding window for (2, 4) FD scheme in 2D space

Comparison of FP operations and memory accesses
for different FD schemes

4444Total external
memory accesses

3519117Total Operands

14852.5FP operation to
memory access ratio

56322010Total FP Operations

(2, 16)(2, 8)(2, 4)(2, 2)FD Schemes

* The Theoretical FP performance to memory bandwidth
ratio for Intel P4 3.0GHz Processor is 3.75 (6G flops /
800M Words * 2 channels)

Extension to high-order in time: (4, 4) FD scheme

Extend (2, 2) FD scheme to 3D space

Extension to 3D (2, 4-4-2) FD scheme

Highlights of the hardware implementation

• High-order FD schemes:
—Increase the number of FP computations per grid
—Reduce numerical dispersions
—Much more accurate simulation
—Reduce the total number of girds

• Pipelined FP computing engine
—Sustained computational speed
—One output at every clock cycle

• Sliding window based data buffering subsystem
—Efficient cascaded FIFO structure
—Provide a new set of operands to the computing engine at every

clock cycle
—Input/output cache to hide the overhead of SDRAM

The basic idea of our approach

• Keep the number of external memory accesses unchanged using
sliding window buffering structure.

• Saturate external memory bandwidth by adjust the clock rate
applied to the computing engine.

• Adjust the order of FD approximations to take full advantage
of FPGA’s computational potential.

• Adopt different FD schemes (high-order in space, high-order
in time, hybrid schemes…) for different RC platforms

Results:

• A balancing point can always be reached where the utilization
of onboard FPGA resources and external memory bandwidth are
all maximized.

• This preferable scalability makes our design accommodated to
most commercial RC platforms

Simulation results - Platform

• Entry-level Xilinx ML401 Vertex-4 evaluation board
— One XC4LX25 integrating 24,192 Logic Cells, 48 DSP Slices, 72 18Kb

SRAM Blocks.
— 64MByte onboard DDR-SDRAM modules with 32-bit interface connecting to

FPGA.
— 9Mb onboard ZBT-SRAM with 32-bit interface.

• Software development environment
— Xilinx ISE 6.3i
— ModelSim 6.0se

• Referential platform
— P4 3.0 GHz Dell workstation with dual-channel 1GB memory
— INTEL C++ compiler v8.1 for Linux

Wave propagation test in 2D media with constant velocity

• Number of spatial grids:

Storage requirements: 4 M words

Total time-march steps; 6000

Total number of grid computations:

• Keep the number of 2D grid points unchanged to evaluate the
speedup attributed purely to our hardware implementations.

• The clock rate applied to onboard DDR-SDRAM modules is
100MHz, to the computing engine is 50 MHz.

• The referential software codes are programmed by ANSI C
and compiled using Intel C++ v8.1 on Linux OS.

• Compiler is optimized for speed. (-O3 –tpp7 and –xK) and
20% of the CPU’s peak performance are reached.

Speed Comparison between PC and RC

28/30/98183.2048.3815.10(4, 4)
28/30/97322.4949.5019.90(2, 8)
20/22/72121.8049.6327.53(2, 4)
16/10/48851.4949.7133.27(2, 2)

Resource
Utilizations

(RAM Blocks
/DSP Slices

/Logic Slices)

Speed-up
Computational

Throughput
(Grid/second)

Hardware Implementations
Software

Computational
Throughput

(Million Grid
/ second)

FD
schemes

Performance for realistic problem: Marmousi model

• A prevailing 2D model with complex underground structure
synthesized in 1990s.

• A benchmark in seismic data processing industry for calibrating
imaging algorithms.

• 2D grids cover dimensions of 9200m by 3000m with 4m
interval. (2300 X 750 grids)

Parameters for Marmousi modeling

• Free surface boundary condition on the top.

• Damping boundary conditions are applied to 50 absorbing layers
on the left, right and bottom.

• Excitation at x=5000m, z=8m. (ricker wavelet)

• Maximum frequency in source wavelet is set to 80Hz.

• (2, 8) FD computing engine.

• Two extra FP multiplier for boundary damping.

• One extra FP adder together with internal SRAM blocks to
introduce source wavelet.

Snapshots of Marmousi model produced by RC platform

Snapshots of Marmousi model produced by RC platform

Common pitfalls people might make in performance
comparison between PC- and RC-based solutions

• Software algorithms are commonly migrated to RC platforms
with limited modifications.

• FPGA resources and memories are always abundant on
application-specified RC platforms.

• Onboard Hardware architecture and interconnection pattern
are well-tailored to maximize the computational performance
for particular applications.

• External memory bandwidth never imposes a performance
bottleneck.

• RC implementations typically choose small but fast onboard
SRAM modules or even internal RAM blocks as working space.

• Performance comparisons are made between one PC workstation
and a complex RC platform with multiple FPGA chips.

• Naïve software implementations on PC platform are used as
references without careful performance tuning.

