
Harpo
Reid Porter, Al Conti, Jan Frigo, Maya Gokhale, Neal Harvey, Garrett Kenyon

 RCC for Multi-scale Cellular Image Processing

Introduction to Cellular Algorithms
 Lattice Gas Automata

The Harpo Framework
 Overview, examples and performance assessment.

Example Applications
 Plumes, people and movies..

 Examples

- Cellular Automata, von Neumann, John, late 1940s.
- Cellular Neural \ Nonlinear Networks, L. Chua, L. Yang,
 IEEE Transactions on Circuits and Systems, 35 (10), 1988.
- Cellular image and video processing
 The Neocognitron and convolution neural networks.

Simple, parallel and local.

Introduction to Cellular Algorithms

- Synchronous / Asynchronous, Discrete / Continuous, Homogenous / Inhomogeneous variants.

- Simple, parallel and local means many different technologies have been targeted.
- Reconfigurable Computers can exploit fine grain parallelism and are commercial-off-the-shelf.

()1t tf+ =x x-State variable update based on state variables within a local neighborhood:

() () ()and or and
L R T Bf x x x x=x

() i i

i

f w x
!

" #
= $% &

' (
)
x

x

Cellular Automata:

Cellular Nonlinear Networks:

Massively parallel input and output

1985 Custom parallel processor architecture for Cellular Automata
The Connection Machine, W.D. Hillis, MIT Press, Cambridge, Mass, 1985.

1995 FPGA implementation of Cellular Automata
The Cellular Processing Machine CEPRA-8L, Rolf Hoffmann, K. Volhmann, M.
Sobolewski, Mathematical Research, 81:179-188, 1994.

1996 ASIC implementation of Cellular Nonlinear Networks
CNN universal chip in CMOS technology., Espejo, S; Carmona, R; DominguezCastro, R; RodriguezVazquez, A, International
Journal of Circuit Theory and Applications; Jan.-Feb. 1996; vol.24, no.1, p.93-109

2000 FPGA implementation of Cellular Nonlinear Networks
Low-cost, high-performance CNN simulator implemented in FPGA Cellular Neural Networks and Their Applications, Perko, M.
; Fajfar, I. ; Tuma, T. ; Puhan, J. Proceedings of the 6th IEEE International Workshop on Cellular Neural Networks; May, 2000.

2003 FPGA implementation of Multi-layered Cellular Networks
Optimizing Digital Hardware Perceptrons for Multi-Spectral Image Classification, Reid
Porter et. al., J. Math. Imaging and Vision 19, 133-150, 2003.

Configurable multilayer CNN-UM emulator on FPGA, Z. Nagy, P. Szolgay, IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications; June 2003; vol.50, no.6, p.774-8.

2004 FPGA implementation of Cellular Automata continues…
Implementing cellular automata in FPGA logic, Halbach, M.; Hoffmann, R., 18th International Parallel and Distributed
Processing Symposium, 26-30 April 2004, Santa Fe, NM, USA; p.258

2004 ASIC implementation of Cellular Nonlinear Networks continues…
ACE16k: The third generation of mixed-signal SIMD-CNN ACE chips toward VSoCs, Rodriguez-Vazquez, A et. al., IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications; May 2004; vol.51, no.5, p.851-63

2005 FPGA implementation for flexible topology, multi-scale cellular algorithms
A Reconfigurable Computing Framework for Optimal Multi-scale Cellular Image Processing, submitted, 2005.

20 Years of Cellular Algorithm Hardware

Synchronous, Discrete Cellular Algorithms in Space and Time

Data Parallel

Pipelined (Synchronous)

O(N) external bandwidth O(1) external bandwidth

N cells

 Harpo
Computer vision

Cellular Automata

Overhead: Edge data and latency

Instruction Parallel

Hexagonal Lattice Network

Lattice Gas Cellular Automata

Update Matrix

Snap-shot of lattice gas evolution

Shown in 1980s to be
mathematically equivalent to
Navier-Stokes simulation.

Advantages:
• Efficient and scalable.
• Complex geometry easily modeled.
• Examples: flow through porous
media, automobile aerodynamics.

State vector
for 3 neighbors

State vector
for 3 neighbors

Shift registers on-chip
512 Deep * 14208 Wide

Shift registers off-chip
2M Deep * 216 Wide

Pipelined (222):
2048 * 27268 cells
169 cells / clock cycle (76% efficiency)

Pipelined * Parallel (55 * 16 = 880):
8192 * 6912 cells
840 cells / clock cycle (95% efficiency)
At 100MHz this means 84Gcells/sec

With communication (required for arbitrary
sized arrays) we estimate 10Gcells/sec

Xeon 3.19GHz : 12 – 58 MCells / second
 833 – 172 x speed-up

Cellular Automata Implementation

Tiling the large scale arrays

SRAM

PE

PE

PRNG

PRNG

PRNG

SRAM

Pipelined CA

T=1

T=2

T=3
PE

The HARPO Framework

Introduction to Cellular Algorithms
 Lattice Gas Automata

The Harpo Framework
 Overview, examples and performance assessment.

Example Applications
 Plumes, people and movies..

Harpo System Overview

Flexibility: We can execute multiple cellular arrays at multiple scales in parallel.

Programmability: Cellular algorithm design based on machine learning.

Flexibility: Cellular Algorithm Specification

(def delay-Line (in memIn) (out memOut)
 (param taps)
 (set (index memOut 1) memIn)
 (replicate (i 2 taps)
 (Buffer
 (in (index memOut i-1)
 (out (index memOut i))))

(local memIn)
(local memOut)
(local lineOut)
(local (temp 1 3))

(delay-Line (in memIn) (out temp) (taps 3))
(Linear (in temp) (out lineOut) (windowSize 5))
(Threshold (in linOut) (out memOut) (initType abs))

Sequence used in training Output from system

Test Sequence

SRAM

SRAM

SRAM SRAM
T T-1 T-2

Threshold

Linear

Scale language example

Output from system

(def feature-Node (in memIn) (out memOut)
 (local temp)
 (Linear
 (in memIn)
 (out temp)
 (paramType gabor)
 (initType random))
 (Threshold
 (in temp)
 (out memOut)
 (initType random)))

(def multi-Layer-Net (in memIn) (out memOut)
 (param numFeatures)
 (local (temp 1 numFeatures))
 (replicate (i 1 numFeatures)
 (feature-Node
 (in memIn)
 (out (index temp i))
 (windowSize 9)))
 (feature-Node
 (in temp)
 (out memOut)
 (trainFlag true)))

(def pre-Process (in memIn) (out memOut)
 (Combine (in memIn)
 (out (index memOut 1))
 (funcType squared))
 (Normalize (in memIn)
 (out (index memOut 2))
 (funcType squared)))
;;;;;;;;;;;;;;;;;;;;
;; Top level
;;;;;;;;;;;;;;;;;;;;
(local memIn)
(local temp)
(local memOut)
(pre-Process
 (in memIn)
 (out temp))
(Evolve
 (Hardware
 (multi-Layer-Net
 (in temp)
 (out memOut)
 (numFeatures 4))))

Hardware / Software Co-design

Scale language example Corresponding Network

 Output image from each layer
 704 pixels by 480 pixels

Hardware Sub-Network

Resource Usage and Speed-up

Application 1

Hardware Resource Usage

Hardware API

Performance Assessment

- For many problems local information is not enough
(e.g. object recognition).

- Hierarchy is used to incrementally introduce more
global information.

- Multi-scale processing in parallel is challenging
since the data volume changes.

- Most other architectures process each scale in a
different pass.

- Device capacity is reaching the point where the
entire multi-scale algorithms can be implemented in
parallel.

- Many multi-scale solutions of interest have strong
local dependencies between layers at different
scales. Therefore can be difficult to exploit the
parallelism within a single scale.

- Cellular image processing is very regular.

A multi-scale application: finding corners.

Edges: 4 orientations

Right angles: 8 orientations

Multi-scale Cellular Image Processing

Generalized neighborhood functionTypical neighborhood function

Pipelined Multi-scale Processing

Multi-scale Example

65Slices

4Ram

93Mults

% UtilResource

 Output images from hardware sub-network Hardware Sub-Network

Hardware and software can be used in a number of different ways during learning:
- Genetic algorithms (GA) are a global optimization technique. The sample and test
 approach is ideal for hardware/software since we only read back error for each test.

- A linear discriminant can be found with an efficient local optimization method but
 data must get back to the micro-processor to invert a matrix.

Pipeline Evaluation Time: 0.0026 seconds

Communication Time: 0.004 seconds
Discriminant in software: 0.15 seconds
Optimal threshold in software: 0.05 seconds

- With the GA we can execute 79x more evaluations than with the 2-stage approach.

Programmability: Co-design and Learning Performance
Input Image Application 1 Application 2

Hardware / software Co-design and Learning Performance

Comparing Genetic Algorithm efficiency to Genetic Algorithm & Linear Disciminant

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

Time (1/6th seconds)

1
- E

rr
o

r

Plume Problem Two-Stage

Plume Problem GA

One Guy Two-Stage

One Guy GA

All Guys Two-Stage

All Guys GA

Example Applications

Introduction to Cellular Algorithms
 Lattice Gas Automata

The Harpo Framework
 Overview, examples and performance assessment.

Example Applications
 Plumes, people and movies..

Architectures considered

- Temporal
- Multi-Scale
- Multi-Stage

 Estimated performance

 - Network optimized via
 greedy learning
 - Boosting used to build
 ensembles of varying
 complexity.

Example training frames

 - 8 sequences marked
 - From period of about 15min
 - 4 frames used for training
 - 4 frames used for testing

Segmenting Exhaust Plumes

0.2

0.7

1.2

1.7

1 2 5 10 20

Boosting iterations

0.7

1.2

1.7

2.2

1 2 5 10 20

Boosting Iterations

Er
ro

r x
 1

0-3

Training Testing

- Eglin Skymaster UAV test platform
- 3-color S-VHS (30 frames/sec)

Segmenting Exhaust Plumes

Point-and-click feature extraction

Future Work: Report key video sequences where the object of interest interacts with
more general object classes and / or behaves in particular ways e.g.

1. Extract a family of objects and features in parallel.
2. More complex algorithms to detect interesting behavior and events.

Point-and-click feature extraction

A framework to meet increasingly complex recognition problems.

Summary

• Cellular Algorithms map extremely well to RCC

• Some applications are naturally cellular, but research is often required.

• Harpo abstracts memory management and provides a path to automatic
 generation of extremely efficient hardware.

• Pipelined multi-scale processing is an excellent match to RCC since
 datapaths can be customized for each application to optimize resource usage.

• Harpo currently targets a single co-processor node.

• Future work will investigate cluster configurations.

Finding all the people

