Terrestrial-Based Radiation Upsets A Cautionary Tale

Heather Quinn, Paul Graham hquinn, grahamp@lanl.gov

Overview

- Motivation and Background
 - Terrestrial-based Radiation: Coming Soon to a Computer Near You
 - Soft Errors and System Reliability
 - The Vulnerability of FPGA Systems
- Soft Error Rate Estimates
- Low Impact Mitigation Methods
- Conclusions and Future Work

Background: What is Terrestrial-based Radiation?

- Terrestrial-based radiation primarily from neutrons
 - Cause memory upsets
- Flux dependent on longitude, latitude, altitude and geomagnetic rigidity
 - Radiation peaks at high altitudes and near poles
 - Soft errors (SEUs) increase accordingly

Factors in Terrestrial-based Radiation Upsets

- Physics: smaller is not better
 - $_{-}$ Smaller transistors are easier to upset ($\mathsf{Q}_{_{\mathrm{crit}}}$)
 - Denser designs are easier to upset
- System Design: increasing sensitivity (cross section)
 - Microscopic: more complex components each generation
 - Macroscopic: larger systems each generation
- System Location: peak neutron radiation levels
 - Multiprocessor and multi-FPGA systems for airborne applications are under research

Soft Errors and System Reliability

- Soft errors are often undetected, unmitigated
- For large-scale, reliable systems unmitigated soft errors are disastrous:
 - Sun Microsystems received bad press for soft error failures in their high end servers
 - System X architect joked they "felt like [they] had not only built the world's third fastest supercomputer, but also one of the world's best cosmic ray detectors."
 - Q Cluster at LANL experiences 26.1 CPU failures a week due to soft errors
- We are interested in highly available, highly reliable reconfigurable supercomputers with thousands of FPGAs and microprocessors
 - Large cross-sections

Soft Errors in FPGA Systems

- FPGA systems are not exempt from soft errors:
 - The entire system (FPGAs, microprocessors, memory) is sensitive
 - Memory upsets are the root problem
- Memory upsets in FPGAs cause:
 - Changes in intermediate processing values
 - Changes in the state
 - Changes in the configuration

As FPGA systems increase in complexity, soft error rate also increases

Mitigating Soft Errors: Expensive

- Not mitigating soft errors expensive for large-scale, reliable systems
 - Silent data corruption
 - Unreproducible system crashes
- Shielding for neutron radiation is nearly impossible
 - Underground bunkers covered in meters of rock, dirt and water
- Mitigating soft errors through traditional methods is expensive
 - Area, power, speed

Low impact mitigation methods are needed

Analysis Setup

Use vendor test data to estimate soft error rates for untested devices, locations and system size

- Scale reference systems to estimate SER for locations
 - San Jose, Albuquerque, Cheyenne,
 Los Alamos, Leadville, Mauna Kea,
 White Mountain
- Scale reference systems to estimate SER for other systems
 - More/larger FPGAs, more memory, more microprocessors

Scaling Soft Error Rates

SER:

$$SER = flux * \sigma_{dev}$$

- Estimates scaled from reference systems
 - Scaling for locations

$$SER_{loc2} = \left(\frac{flux_{loc2}}{flux_{loc1}}\right) * SER_{loc1}$$

Scaling for system size

$$SER_{sys2} = (\frac{\sigma_{dev2}}{\sigma_{dev1}}) * SER_{sys1}$$

Scaling for both

$$SER_{2} = \left(\frac{flux_{loc2}}{flux_{loc1}}\right) * \left(\frac{\sigma_{dev2}}{\sigma_{dev1}}\right) * SER_{1}$$

Derating/Uprating Estimates

- Estimates are worst case scenario, order of magnitude
- Derating Factors:
 - System Utilization: 5-20% of the entire system
 - "Rosetta Factor": Accelerator test results are about 1.5 times higher than atmospheric test results
- Uprating Factors:
 - Transistor Size: under research

General Trends in Soft Error Rates

- Increasing system size or flux unavoidably increases SER
 - We are not here to beat up on vendors
- With current trends in system design, soft errors will become more prevalent:
 - Microscopic: design components to be less likely to upset
 - Macroscopic: design large systems to be error resistant
- Research and development <u>now</u> while the problem is still manageable
 - Determine the scope
 - Find low impact mitigation methods
- Change our system design methods

FPGA Estimates

- Estimates were determined from three tests
 - Xilinx Rosetta Test: Atmospheric and accelerator testing of a 100 device XC2V6000 system
 - iRoC/Actel Test: Accelerator testing of Actel, Altera, and Xilinx devices
 - Altera Test: Testing of EP1C6, EP1C20, EP1S25, and EP1S80 devices
- Rosetta test results were used as the reference system
 - Increased flux and system size to determine the change in MTTU
 - Correlated results to the other two tests for accuracy

Xilinx Results

Multi-FPGA systems and high altitude systems need to mitigate soft errors

NATIONAL LABORATORY

UNCLASSIFIED

Memory Estimates

- Estimates were determined from two tests
 - IBM Test: Monte carlo modeling
 - iRoC Test: Atmospheric testing in airplanes
- IBM assumes that 4% of all upsets in DRAM are multi-bit upsets
 - Density, geometry, transistor size important factors
 - Multi-bit upsets break ECC protection

IBM Results

Memory Results

- Soft errors in the memory subsystem comparable to FPGAs
- Derating for memory subsystem utilization important
 - How much memory is used
 - How much memory is read

Even with derating, ECC or Chipkill protection is suggested

Microprocessor Estimates

- Much research has been done on preventing soft errors
 - Actual values unreported
- Caches and register files are sensitive to soft errors
 - Upsets to the L2 cache most common
 - Upsets to the L1 cache or register files rare but bad

Microprocessors

- Most current server-grade microprocessors have ECC protected
 L2 caches with cache scrubbing, and parity protected L1 cache
- Most older and many current commodity-grade microprocessors have unprotected L1 and L2 caches
 - Used in many computing clusters (\$\$\$)
 - Used in large quantities, soft errors become apparent

The cost of ad hoc soft error mitigation and crashes is more expensive than server-grade microprocessors

Bringing It All Together: The Cray XD1

- A reconfigurable supercomputer
 - 26 Xilinx FPGAs
 - 12 Opteron microprocessors
 - 24 GB ECC-Protected RAM
- Assume Opterons correct all single bit errors but fail on multi-bit errors

Estimated Soft Error Results

UNCLASSIFIED

ECC-Protection vs. Parity in Large Systems

UNCLASSIFIED

Low Impact Mitigation Methods

- Research now before soft error problem worsens
- Need methods that:
 - Balance power, speed, and area for reliability
 - Can be tuned to soft error rate
 - Are easy for designers to implement

Mitigating FPGA Soft Errors

- Use CLBs or embedded microprocessors to mitigate soft errors
 - Xilinx SEU Controller for Virtex II Pro: ICAP interface and Power PC
 405 core to scan readback for errors
 - Partial Triple Modular Redundancy: TMR critical gates
- Partial configuration methods that rely on readback
 - Single Frame Correction: CRC frame check to detect errors in the readback data
 - Processor-based Detection: host processor detects errors in readback while FPGA processes
 - Scrubbing with CRC: preventively reconfigure device

Mitigation at the Microprocessor Level

- Software must be aware that individual nodes can fail
 - Nodes failure causes only interruption to node computation
 - Software senses when a node has failed
 - Reschedule the computation that the node was processing
 - Reboot the node
 - Reschedule all computations for the node while rebooting
- Software detection of faulty computation
 - Detection methods: checkpointing, information theory, machine learning
 - Software manages reprocessing of faulty computation:
 - Reseting node that the computation originated from
 - Recalculate computation

Conclusions

- With the current trends in technology and system design soft errors will become more noticeable in the next decade
- Recommendations for reconfigurable supercomputers
 - Low impact mitigation methods for FPGAs
 - ECC or Chipkill protected RAM
 - Server-grade microprocessors with protected caches and cache scrubbing
 - Nodes fail independently
 - Software handles node failures

Terrestrial-Based Radiation Upsets A Cautionary Tale

Heather Quinn, Paul Graham hquinn, grahamp@lanl.gov

