Trident Compiler - A compiler for Scientific
Computing on FPGAs

5

Trident Compiler Team
Justin L. Tripp, Kris Peterson, Jeff Poznanovic, Christine Ahrens, Neil Steiner

Los Alamos National Laboratory

October 2005

Introduction

e Scientific Computing is typically floating point
(singles and doubles)

e Scientific Computing requires support of legacy software

e Much of the software has high-level parallelism already extracted
(e.g., MPI, etc.)

e Other Floating-Point Compilers for FPGAs

x Map compiler — only for the SRC Machine
* Celoxica DK — macro generation only, HandelC

e Need a compiler to work with high-level languages that provides
acceleration for Scientific Computing.

» Los Alamos

NATIONAL LABORATORY
S$T.194

2 / LAUR 05-6209

Trident Compiler

FPGAs can perform high-performance floating-point (FP)
operations. However, traditional FPGA development is difficult and
few tools exist to specifically aid FP hardware development.

Trident Goals:

e Accept C input with double and float data types.
e Automatically extract available parallelism.

e Automatic pipelining of loops.

e Allow the selection from different FP libraries.

e Allow user developed FP libraries.

» Los Alamos

NATIONAL LABORATORY
194

3 / LAUR 05-6209

Profiled Code

Inner Loop

» Los Alamos
NATIONAL LABORATORY
EST.1943

Big Picture

Code

Send Inputs
% %

% 2
Read Results

Inner Loop

)\ tcc

CcC

a.out

l VHDL

Board Model
Synthesizer | <—

l EDIF

Xilinx ISE

|

BitStream

4 / LAUR 05-6209

Organization

Four principal phases of compilation:

LLVM front—-end
Y

GCC front—end

{

IR to Bytecode

1
High Level
Optimizations

{

Bytecode to
Trident IR
I

Trident IR
Transformation

LLVM - Low Level Virtual Machine (www.llvm.org)
IR - Intermediate Representation

» Los Alamos

NATIONAL LABORATORY
EST.1943

> Predication

1

Hyperblock
Formation

1

Operation
Selection

1

Optimizations

Y

Scheduling

Resource

Analysis

Synthesis

\i

Schedule
Selection

\i

Loop Block

Pipelining

» Datapath
Generation

1

State Machine
Generation

1

Register File
Generation

1

Control
Generation

Final

Output

5 / LAUR 05-6209

LLVM: How Trident Uses it

e GCC-based C and C+-+ front-end provided by LLVM produces
LLVM bytecode (optimizations and linking are disabled).

e Note: C programs should not contain print statements, recursion,
malloc or free calls, function arguments or returned values, calls to
functions with variable length argument lists or arrays without a

declared size.

e LLVM Trident pass optimizes LLVM bytecode (constant
propagation, small function inlining, loop invariant hoisting, tail
call elimination, small loop unrolling, CSE and others) and
generates modified form of LLVM language

e Trident parses LLVM language into Trident IR (Java)

» Los Alamos
NATIONAL LABORATORY
EST.1943 6 / LAUR 05‘6209

Trident Intermediate Representation (IR)

The Trident IR is used for the following:
e Convert operations into predicated operations and form
hyperblocks.

e Optimize and modify the IR to eliminate unnecessary and
expensive operations.

e Map generic operations to library specific operations.

e Resource allocation, scheduling, and synthesis.

» Los Alamos

NATIONAL LABORATORY

7 / LAUR 05-6209

Trident

Control Flow Graph

true

Control Edge

HyperBlock
true
Control Node

HyperBlock

Boolean
%~b1

» Los Alamos

NATIONAL LABORATORY
EST.1943

b1

IR - Data Structures

Hyperblock

Operation
Operator Operands Predicate
:\ fpadd | %tmp_24 | Yotmp_21| %otmp_23 | %bl

Operations also include:

e Start and Stop times

e Operand Type
e HW Reuse set

e Operator Class Information

8 / LAUR 05-6209

Trident IR - Passes

Optimization Hardware Fix Up Util and Debug
AddPredicates AllocateArraysPass AddTypeToPrimals CreateDependenceFlow
ALAPSchedule AnalyzeHWContraints | CallReplace GenSchedulerStats
ASAPchedule AnalyzelogicSpace CheckBlockNames SetNodeOrder

Calcll GenerateCircuit ControlRemoval PrintDataFlow
CSERemoval LoadHWInfo ConvertGep PrintGraph
FDSchedule OperationSelection CvrtBlkNonPrimToPrim | PrintLoopGraph
FixFAbsInst SwitchlfConvert EnsureSingleDefs PrintVariables
FixFSublnst FixLoadPtrInsts VerifyBlockGraph
GlobalDeadCode PhiLowering VerifyOperands

MergeParallelBlocks
MergeSerialBlocks
ModuloSchedule

RemoveGlobalPred

» Los Alamos
NATIONAL LABORATORY
EST.1943

9 / LAUR 05-6209

Hardware Analysis and Instruction Scheduling

There is always a limited possible communication bandwidth with
memory and space on any given FPGA chip. Ensuring successful
implementation of the circuit on the target chip and achieving
maximum execution speed requires analysis of the hardware.

e Hardware Analysis

* Preliminary schedule to determine times of memory reads and writes
* Array to memory allocation
* Logic space requirements analysis

e Instruction Scheduling (schedule type chosen by user)

* non-loop code - ASAP, ALAP, Force-Directed
* loop code - Modulo scheduling

» Los Alamos

NATIONAL LABORATORY

10 / LAUR 05-6209

Force-Directed Scheduling: Results

FD asap alap

simple pi
Average Ops/Cycle | 0.163 0.163 0.162
Max Ops/Cycle 2.0 4.0 2.0
Cycle Count 122 123 122
photon
Average Ops/Cycle | 0.378 0.321 0.378
Max Ops/Cycle 4.0 13.0 4.0
Cycle Count 111 111 111
euclid
Average Ops/Cycle | 0.229 0.229 0.229
Max Ops/Cycle 4.0 6.0 4.0
Cycle Count 70 70 70

» Los Alamos

NATIONAL LABORATORY

11 / LAUR 05-6209

Modulo Scheduling

Modulo Scheduling is an algorithm that schedules a loop as just

shown (with a body having a depth of Il cycles), while
simultaneously finding a working Il and scheduling the instructions
within the body of the loop such that hardware conflicts and

interloop dependency problems can be avoided.

it 0 it 1 1t 3
ﬁit :
' 4

it 2 1t

| - Initiation Interval

» Los Alamos
12 / LAUR 05-6209

NATIONAL LABORATORY
4

Modulo Scheduling: Results

These results are for the main loop of the code:

No Modulo
FD ASAP ALAP

Modulo
FD ASAP ALAP

simple pi

Average Ops/Cycle
Max Ops/Cycle
Cycle Count

0.168 0.168 0.170
2.0 4.0 2.0
39 89 88

1.76 190 1.82
25.0 27.0 26.0
29 29 29

simple float loop

Average Ops/Cycle
Max Ops/Cycle
Cycle Count

212 212 2.83
4.0 4.0 4.0
17 17 17

20.25 2025 2925
50.0 50.0 50.0
4 4 4

» Los Alamos

AAAAAAAAAAAAAAAAAA

13 / LAUR 05-6209

Synthesis

Datapath generation

FSM and Multiple-block Control
Arrays

FP Library Integration

Control Flow
Graph

'

Library
Mapping

'

* Quixilica

Abstract Circuit Generator

x Arénaire

Register File| Datapath
enerator Generator

x Trident (local library)
HDL Generation

* Abstract Circuit
* VHDL Backend

x Board Interface

» Los Alamos

NATIONAL LABORATORY
.194

'

Back—end
Generator

'

Hardware Design

14 / LAUR 05-6209

A

Synthesis — Structure

f N
Top Level - -
Block 1 Datapath Memory Bus
T
))
State OAS> @ Register
Machine ' ' @ File
-
Control ®
Module)
Y Control £ ®
(Block ("
ock N Datapath
T)
State DD @
Machine @
' I)
J
___J
\L y

» Los Alamos

NATIONAL LABORATORY

EST.1943

15 / LAUR 05-6209

Synthesis Results

Here are the results for a few benchmarks. These were obtained for
the Cray XD1 using the ISE 6.3p3 tools with the Quixilica
floating-point library. The overhead for interfacing to the Cray
FPGA Board is about 10-15%.

Benchmark Clk (MHz) Slice Count %Area Blocks States
Photon 187 12,109 51 1 112
Photon-hand 98 8,819 20 1 98
Euclid 200 7,039 19 1 71

Photon-hand is an engineer generated design for the Radiative Heat
transfer application (Photon). The numbers are just for the design
pipeline and do not include any overhead required to interface with a
particular board.

» Los Alamos

AAAAAAAAAAAAAAAAAA

AL 7T [—— 16 / LAUR 05-6209

Current Status

Trident provides an open framework for FP computation exploration.

e Support for Single and Double floating point operations.
e Support for fixed size arrays.

e Limited applications can be synthesized, simulated and executed
on the Cray XD1.

e C code for the inner loop of the Radiant Heat Transfer
Application executes on the XD1.

e Two different FP Libraries can be selected (Quixilica, Arénaire).

e Loop Pipelining via Modulo Scheduling is supported.

» Los Alamos

NATIONAL LABORATORY

17 / LAUR 05-6209

Future Directions

e Complete Trident 1.0 Open Source Release

e Add support for streaming data

e More aggressive memory bandwidth allocation
e Support for other HW platforms

e Dynamic Memory Allocation (variable sized arrays)

» Los Alamos

NATIONAL LABORATORY

18 / LAUR 05-6209

