
Implications of FPGAs for
Floating-Point HPC Systems

LACSI Workshop on Algorithm
Acceleration with Reconfigurable Hardware

11 October 2005

Keith D. Underwood
K. Scott Hemmert

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Overall Message

• FPGAs should be able to accelerate several types of
double precision floating-point kernels

• They might even be able to accelerate applications
– Many apps user libraries (BLAS, FFT, Solvers)
– But, most applications are more than just kernels
– System architecture is still a major question

• Several major barriers still stand in the way
– FPGA vendors must care about HPC
– FPGAs must reach certain levels of reliability
– Market is cost sensitive

Double Precision MACC Performance Trends

Sources of Trends – Density

Source of Trends – 4-LUT Delay

Trend Challenges – Clock Rate

Keeping Up With Trends?

• Xilinx made some design decisions in Virtex-4
which limit the performance of double precision
floating-point
– Carry chain is not significantly faster than in

Virtex2Pro
• Trade off: Faster on/off times, for slower ripple time
• This can be overcome, but requires a trade-off

between clock frequency and area
– None of the Virtex4 families have a “good”

multiplier/logic mix
• This needs to be addressed in future parts!

Keeping Up With Trends?
V2P 100-6
(original)

V2P 100-6
(current)

40
140
5720

64
204

13056

48
206
9888

24
204
9792

27
142
3834

MACC:
Units:

Frequency:
Peak MFLOPS:

15
140
4200 18900

21
296

12432

Predicted
for 2005

V4 FX140-12
(2005)

Adder:
Units:

Frequency:
Peak MFLOPS: 22880

105
296

31080

Multiplier:
Units:

Frequency:
Peak MFLOPS: 17253

21
296
6216

Keeping Up With Trends?
What If: Better Logic/DSP48 Mix*

V2P 100-6
(original)

V2P 100-6
(current)

27
142
3834

48
206
9888

24
204
9792

MACC:
Units:

Frequency:
Peak MFLOPS:

15
140
4200 18900

32
296

18944

Predicted
for 2005

V4 FX140-12
(2005)

Multiplier:
Units:

Frequency:
Peak MFLOPS: 17253

41
296

12135

*The Virtex4 FX140 has 192 DSP48 slices. The
proposed mix would have 288 DSP48 slices.

(This is 3 columns instead of 2 columns of DSP)

Reasons it Might Translate to
Program Performance

• Programmable use of local storage
• Address generation can be decoupled from

computation
• Large pin count for direct connection to fast,

wide, external memory
• High speed signaling for integration with network

and processor
• User allocates logic
• Performance can be delivered to some apps

through libraries

Reasons it Might NOT

• Must exploit significant parallelism to achieve
performance
– Many floating-point units
– High latency FPUs
– Low clock rate FPUs

• System integration issues
• Amdahl is not your friend
• Hard to program and “Dusty Decks” abound

– Decks are big
– Unfortunately, they aren’t so dusty

Application 1: A Quantum Chemistry Code

• Uses lots of small, dense matrix multiplies
– Consumes as much as 90% of the execution time
– Processors are relatively bad at these
– FPGAs are relatively good at these

• Significant challenges to overcome
– The BLAS API is TERRIBLE for this app
– Cost is a major constraint because this is not a

huge fraction of the laboratory workload
– Implications for network bandwidth
– A 10X kernel performance gain yields a 5X

application performance gain

Matrix Multiply Performance

The Perfect Architecture
(for this app….)

Processor

M
em

ory FPGA

NIC

Application 2: Molecular Dynamics

• One potential gain: uses 3D-FFTs

• Challenges
– The 3D-FFT is a parallel 3D-FFT
– Each dimension is small and is currently written to

call lots of 1D-FFTs (another broken API)
– Oh, and lots of communications (matrix

transposes)
– And it’s only 15-20% of the app…

Future FFT Performance versus CPUs

Streaming, Small FFT Performance Graph

The Perfect Architecture
(for this app….)

Processor

M
em

ory

FPGANIC

Application 3: Parallel Sparse Matrix Solve

• Ok, so that isn’t an app…
– It does take as much as 75% of some applications

execution time
– It is better suited to FPGAs than microprocessors

• High memory bandwidth needs
• Indirected loads (a = b[c[d]])

• It does have significant challenges
– Data tends to live in app
– Needs network integration

(Dense) Matrix Vector Multiply on FPGAs

The Perfect Architecture
(for this app….)

Processor

M
em

ory

FPGANIC

M
em

ory

Major Challenges Remain

• This is a subset of applications
– Many apps don’t have “kernels”
– Most of those don’t even follow the traditional 90/10

model (90% of the time in 10% of the code)
• System Architecture must be stable and general

– Applications will not recode for 4 boutique
architectures

– If migration from one generation to the next is
“hard”, applications will drop the platform

– A standard, useful API
• Reliability is probably the single biggest

challenge in major HPC systems

Reliability

• FPGAs have high susceptibility to Cosmic Rays
– With large numbers of nodes, the upset rate will be

too high to ignore

• FPGAs do not have:
– A way to detect cosmic ray hits
– A way to correct bit errors
– A way to prevent memory commits after a cosmic

ray hit

“Smoke Proof” Verification

• Thermal disruption
– Bad User: Connect all flip-flops in 500 MHz toggle

chain. Thermal load melts solder.
– Good User: Transient load trips current limit and

crashes node.
– How do we prevent both and provide “clean” exit

path?
• Part destruction

– Drive output while enabling input

Conclusions

• FPGAs on track to dramatically outperform CPUs on double
precision, floating point operations
– Performance growth may slow if vendors do not keep

floating point in mind when developing new
architectures

– Performance growth may accelerate if vendors decide to
focus on floating point.

• Important questions still to answer
– What floating-point friendly, commercially viable

improvements can be made to FPGA architectures?
– Is there a sufficiently general, sufficiently cost-effective,

system architecture?
– What do the “right” APIs look like for standard library

operations?

Questions?

	Implications of FPGAs for Floating-Point HPC Systems
	Overall Message
	Double Precision MACC Performance Trends
	Sources of Trends – Density
	Source of Trends – 4-LUT Delay
	Trend Challenges – Clock Rate
	Keeping Up With Trends?
	Keeping Up With Trends?
	Keeping Up With Trends?What If: Better Logic/DSP48 Mix*
	Reasons it Might Translate to Program Performance
	Reasons it Might NOT
	Application 1: A Quantum Chemistry Code
	Matrix Multiply Performance
	The Perfect Architecture (for this app….)
	Application 2: Molecular Dynamics
	Future FFT Performance versus CPUs
	Streaming, Small FFT Performance Graph
	The Perfect Architecture (for this app….)
	Application 3: Parallel Sparse Matrix Solve
	(Dense) Matrix Vector Multiply on FPGAs
	The Perfect Architecture (for this app….)
	Major Challenges Remain
	Reliability
	“Smoke Proof” Verification
	Conclusions
	Questions?

