Parameterization of Compiler

Optimizations For Empirical Tuning
]

Qing Yi
University of Texas at San Antonio



Empirical Tuning ot Compiler

Optimizations(1)

Application

Command-line opts

A 4

Compiler

—»executable—

machine result

Search Engine

A

Profile information

o Approachl: use compiler command-line options
= Compilers can be configured in many ways
What strategies to use, which optimizations to apply...
= Comand-line options offer only a few knobs
-01 -02 -03 -fast, -qg, ...
= How about different strategies for different fragments?




Optimizations(2)

Empirical Tuning ot Compiler

Application— Compiler —executable—

A

machine result

Program Annotations

A

Search Engine

Profile information

o Approach2: use program annotations
= Can specify many different transformations
What strategies to use, which optimizations to apply,...
= Allow different strategies for different fragments
= Problem: how smart is the search engine?

Dependence, memory, register pressure, ...
Needs ability to perform program analysis




Empirical Tuning ot Compiler
Optimizations(3)

Application—»f Compiler é—»executable—» machine

éSearCh Enginé )

_______________________________

> result

Profile information

o Approach3: combine compiler and search engine

= Compiler knows about the program

What strategies to use, which optimizations to apply,...

Dependence, memory, register pressure, ...
= Problem: flexibility and composibility

Compiler must be shipped together with application
Compiler must know how to exploit the search space

The compiler writer decides everything




Empirical Tuning ot Compiler
Optimizations(4)

Application —| Optimizer — Configuration space + constraints

l l

Parameterized code Search Engine
A%nﬁguration
Code generator Profile information
T Executable— machine result

o Approach4: Parameterization of optimizations
= Compiler generate parameterized output
What strategies to use, which optimizations to apply,...
= Search engine exploits the configuration space
Use information from the compiler
Dependence, memory, register pressure, ...
= Code generator generates program executable
Applies configuration to parameterized code




Parameterization ot Optimizations---

Blocking

do _i=1, N, bi
do_j=1, N, bj
do _k =1, N, bk
doi = _i, min(N,_i+bi)
doj = _j, min(N,_j+Dbj)
do k = _k,min(N,_k+bk)
C(i,3) = C(i,3)+A(i, k)*B(k,))
o Parameter: blocking sizes
o Configuration space bi(1..N) * bj(1..N) * bk(1..N)

» Tunable at both installation and run time




Parameterization ot Optimizations---
Unrolling

doi=1, N, bi

<repeat #i:i=>i+bi>

C(#i,j) = C(#i,j)+A(#i,k)*B(k,j)
</repeat>

o Parameter: unroll size
o Configuration space bi

0 Need code generator to produce executable
= Not tunable at runtime




Work in progress---Challenges

o Not all transformations can be parameterized

= Loop fusion, loop interchange, scalar replacement,
memory reorganization,...

o Transformations interact with each other
= Exponential combinations of configurations
= Interactions may not be parameterizable

0o How to encode program analysis results from
compiler

= Dependence constraints, insight about programs
= Information useful to the empirical search engine




Current status

o Loop transformations

= Parameterizaton of loop fusion, unrolling,
interchange

= Tuning at installation time and at runtime

o Collaborations
= Rice university
m LLNL
= U. of Tennessee at Knoxville
= U. of Texas at San Antonio




