
Parameterization of Compiler
Optimizations For Empirical Tuning

Qing Yi
University of Texas at San Antonio

Empirical Tuning of Compiler
Optimizations(1)

Approach1: use compiler command-line options
Compilers can be configured in many ways

What strategies to use, which optimizations to apply…
Comand-line options offer only a few knobs

-O1 –O2 –O3 –fast, -g, …
How about different strategies for different fragments?

Compiler

Search Engine

Application machineexecutable result

Command-line opts Profile information

Empirical Tuning of Compiler
Optimizations(2)

Approach2: use program annotations
Can specify many different transformations

What strategies to use, which optimizations to apply,…
Allow different strategies for different fragments
Problem: how smart is the search engine?

Dependence, memory, register pressure, …
Needs ability to perform program analysis

Compiler

Search Engine

Application machineexecutable result

Program Annotations Profile information

Empirical Tuning of Compiler
Optimizations(3)

Approach3: combine compiler and search engine
Compiler knows about the program

What strategies to use, which optimizations to apply,…
Dependence, memory, register pressure, …

Problem: flexibility and composibility
Compiler must be shipped together with application
Compiler must know how to exploit the search space
The compiler writer decides everything

Compiler

Search Engine

Application machineexecutable result

Profile information

Empirical Tuning of Compiler
Optimizations(4)

Approach4: Parameterization of optimizations
Compiler generate parameterized output

What strategies to use, which optimizations to apply,…
Search engine exploits the configuration space

Use information from the compiler
Dependence, memory, register pressure, …

Code generator generates program executable
Applies configuration to parameterized code

Optimizer

Search Engine

Application

machineExecutable result

Profile information

Parameterized code

Code generator

Configuration space + constraints

configuration

Parameterization of Optimizations---
Blocking

do _i = 1, N, bi
do _j = 1, N, bj

do _k = 1, N, bk
do i = _i, min(N,_i+bi)

do j = _j, min(N,_j+bj)
do k = _k,min(N,_k+bk)

C(i,j) = C(i,j)+A(i,k)*B(k,j)
Parameter: blocking sizes
Configuration space bi(1..N) * bj(1..N) * bk(1..N)

Tunable at both installation and run time

Parameterization of Optimizations---
Unrolling
do i = 1, N, bi
<repeat #i:i=>i+bi>
C(#i,j) = C(#i,j)+A(#i,k)*B(k,j)
</repeat>

Parameter: unroll size
Configuration space bi
Need code generator to produce executable

Not tunable at runtime

Work in progress---Challenges
Not all transformations can be parameterized

Loop fusion, loop interchange, scalar replacement,
memory reorganization,…

Transformations interact with each other
Exponential combinations of configurations
Interactions may not be parameterizable

How to encode program analysis results from
compiler

Dependence constraints, insight about programs
Information useful to the empirical search engine

Current status
Loop transformations

Parameterizaton of loop fusion, unrolling,
interchange
Tuning at installation time and at runtime

Collaborations
Rice university
LLNL
U. of Tennessee at Knoxville
U. of Texas at San Antonio

