
Combining Models and Guided Empirical
Search to Optimize for Multiple Levels of

the Memory Hierarchy

Chun Chen

Jacqueline Chame

Mary Hall
Information Sciences Institute

University of Southern California

LACSI Workshop
Oct. 11, 2005

Trade-offs in the Memory Hierarchy

• The best performance comes from balancing
all optimization goals
– Register loads/stores

– L1 cache misses

– L2 cache misses

– TLB misses

– Prefetching instructions

– Instruction scheduling

• Hard problem
– Complex interaction

– e.g. Matrix Multply: Well studied, but still need hand-
tuning for best performance

Current Approaches to Performance Tuning

• Model-Guided Optimization
– Optimization decisions are based on static models of

architecture and optimization impact

– Optimizations are often performed in isolation and in a fixed
order

• Empirical Optimization
– Optimization decisions are guided by feedback from

executing actual code segments on target machine

– Examples: self-tuning libraries (ATLAS, PhiPAC, FFTW etc.)

Model-Guided
Optimization

Empirical
Optimization

Model-Guided Empirical Optimization

Model-Guided
Empirical Optimization

• Goal:
– Compiler derived but with the performance of hand-tuned versions

– Increase machine and programmer efficiencies

• Exploit complementary strengths of both approaches
– Compiler models prune from search space unprofitable solutions

– Empirical data provide accurate measure of optimization impact

• Key Concepts
– Select among implementation variants of the same computation

– Derive integer values of optimization parameters

– Only search promising code variants and a restricted parameter
space

Today’s Development Tools

Perform Analysis

Search and Apply
Transformations
➢ Safety/Profitability
➢ Parameters
➢ Composition

Application
Code

Arch.
Spec.

xform xform xform

xform xform xform

Optimized Code

Execution
Environment

Performance
Monitoring Support

Input
Data Set

Our Development Tool Strategy

Analysis/Models

Transformation Modules

Application Code

Arch.
Spec.Code Variant

Generation Algorithm

Optimized Code +
Representative Input Data Set

Empirical Search Engine
Performance

Monitoring Support

Execution
Environment

P
ha

se
 1

P
ha

se
 2

Set of Parameterized Code
Variants + Constraints

Phase 1: Code Variant Generation

Analysis/Models
➢ Dependence analysis
➢ Reuse/footprint analysis
➢ Register/cache model

Transformation Modules
➢ Loop permutation
➢ Unroll-and-Jam
➢ Scalar replacement
➢ Tiling
➢ Data copying
➢ Prefetching

Application Code

Arch.
Spec.

Code Variant
Generation Algorithm

➢ Prune variant space
➢ Compose transformations
➢ Generate partial code
➢ Determine constraints

P
ha

se
 1

P
ha

se
 2

Transformation Variants and Parameters

Transformations Definition Goal

Loop permutation Change the loop order

Unroll and Jam

Reuse in registers

Scalar replacement

Tiling Reuse in cache

Prefetching Hide memory latency

Enable U&J and Tiling +
Reduce TLB misses

Unroll outer loops and
fuse inner loops

Replace array
accesses with scalar
variables

Divide iteration space
into tiles

Data copying
(w/ tiling)

Copy subarray into
contiguous memory
space

Avoid conflict misses +
Avoid TLB thrashing

Prefetch data into
cache before actual
references

Variants Parameters

-

- Unroll factors

- Tile sizes

-

-

Different loop
orders

Yes/no on
specific data
structures

Prefetch
distances

 All loops are unrolled and tiled and all data are prefetched.
 For degenerate cases, Unroll factor=1, Tile size=1 and Prefetch distance=0, code

transformations are not applied.

Code Variant Generation Algorithm

For each memory hierarchy level in (Register, L1, L2, ...), using models to

 1. Select the data structure D which has maximum reuse from reuse
analysis (if possible, one that has not been considered)

 2. Permute the relevant loops and apply tiling (unroll-and-jam for
registers) according to newly selected reuse dimension

 3. Generate copy variant if copying is beneficial

 4. Determine constraints based on D and current memory hierarchy level
characteristics, using register/cache/TLB footprint analysis

 5. Mark D as considered

• Key Insights:
– Target data structures to specific levels of the memory

hierarchy based on reuse analysis

– Compose code transformations and determine constraints

Transformations of Matrix Multiply

Transformations Variants Parameters

Loop permutation

Unroll and Jam

UI, UJ, UK

Scalar replacement

Tiling TI, TJ, TK

Prefetching PA, PB, PC

IJK(original),
IKJ,JIK,JKI,KJI,KIJ

Data copying
(w/ tiling)

Copy A? Copy B?
Copy C?

DO I = 1, N

 DO J = 1, N

 DO K = 1, N

 C[I,J]= C[I,J]+A[I,K]*B[K,J]

Transformations of Matrix Multiply

X
Transformations Variants Parameters

Loop permutation

Unroll and Jam

UI, UJ, UK

Scalar replacement

Tiling TI, TJ, TK

Prefetching PA, PB, PC

IJK(original),
IKJ,JIK,JKI,KJI,KIJ

Data copying
(w/ tiling)

Copy A? Copy B?
Copy C?

C has most reuse
Make K outermost loop

Transformations of Matrix Multiply

X
Transformations Variants Parameters

Loop permutation

Unroll and Jam

Scalar replacement

Tiling TI, TJ, TK

Prefetching

IJK(original),
IKJ,JIK,JKI,KJI,KIJ

UI*UJ<= 32,
UK=1 (no unrolling)

Data copying
(w/ tiling)

Copy A? Copy B?
Copy C?

PA, PB, PC=0

Unroll-and-Jam I and J
in registers

C in registers
No copy or prefetch

Transformations of Matrix Multiply

X
Transformations Variants Parameters

Loop permutation

Unroll and Jam

Scalar replacement

Tiling

Prefetching

IJK(original),
IKJ,JIK,JKI,KJI,KIJ

UI*UJ<= 32,
UK=1 (no unrolling)

TI*TK<=size(L1),
TJ=1 (no tiling)

Data copying
(w/ tiling)

Copy A, Copy B?
Copy C?

PA, PB, PC=0

A has next most reuse
Tile I and K to reuse
A in L1 cache

Copy A to reduce
conflict misses

Transformations of Matrix Multiply

X
Transformations Variants Parameters

Loop permutation

Unroll and Jam

Scalar replacement

Tiling

Prefetching

IJK(original),
IKJ,JIK,JKI,KJI,KIJ

UI*UJ<= 32,
UK=1 (no unrolling)

TI*TK<=size(L1),
TK*TJ<=size(L2)

Data copying
(w/ tiling)

Copy A, Copy B,
Copy C?

PA, PB, PC=0

B has next most reuse
Further tile J to reuse
B in L2 cache

Copy B to reduce
conflict misses

Phase 2: Empirical Search

Optimized Code +
Representative Input Data Set

Empirical Search Engine:
➢ Incremental search

➢ Register parameters
➢ Tiling parameters
➢ Prefetching distances
➢ Fine-tuning

➢ Constrained parameter values
➢ Search among variants

Performance
Monitoring Support

Execution
Environment

Ph
as

e
1

P
ha

se
 2

Set of Parameterized Code
Variants + Constraints

Search Space

• Set of variants
– Different loop orders, copy yes or no

– Select variant with the best performance

• Integer parameter values
– Unroll factors, tile sizes, prefetch distances

– Each parameter has unique search properties

• Constraints:
– Limit unrolling amount by register capacity

– Limit tiling parameters by cache/TLB capacity and set
associativity

Experimental Results

• Implementation based on SUIF

• Computational kernels:
– Matrix Multiply

– 3D Jacobi

• Architectures:
– SGI R10K

– Sun UltraSparc IIe

• Comparison
– Native Compiler: using the best optimization level possible

– ECO: implementation of our framework

– ATLAS: a self tuning linear algebra library

– Vendor BLAS: vendor provided hand-tuned library

MM Performance Results, SGI R10K

MM Performance Results, Sun US-2e

Jacobi Performance Results, SGI R10K

Jacobi Performance Results, Sun US-2e

Comparison of Search Cost

Code SGI R10K Sun US-2e

MM (ATLAS) 35 min 14 min

MM (ECO) 8 min (60 pts) 6 min (44 pts)

Jacobi (ECO) 3 min (94 pts) 5 min (148 pts)

Conclusion

• Optimizing for multiple levels of the memory
hierarchy is the key to high performance
– Combines static models and empirical search

• Prunes search space
– Uses the combined knowledge from analyses, application and

architecture

• Performance from initial implementation
– Comparable or better than hand-tuned codes

– Comparable or better than self-tuning libraries

– Substantially outperforms native compilers

Future Work

• Extend compiler framework to imperfect loop nests
and multiple loop nests (e.g., LU and composing
BLAS routines)

• Systematic optimization: Apply search techniques
from machine learning and derive a knowledge
representation

• Combine compiler-guided and user-guided
performance tuning (molecular dynamics, mixed
dense/sparse codes, signal processing)

Relevant Publications
• Combining Models and Guided Empirical Search to Optimize

for Multiple Levels of the Memory Hierarchy, by C. Chen, J. Chame and M.

Hall. In Proceedings of the Conference on Code Generation and Optimization, March, 2005.

• Empirical Optimization for a Sparse Linear Solver: A Case
Study, by Y. Lee, P. Diniz, M. Hall and R. Lucas. In International Journal of Parallel Programming,
2005.

• A Code Isolator: Isolating Code Fragments from Large
Programs, by Y. Lee and M. Hall. In Proceedings of the Workshop on Languages, Compilers for
Parallel Computing, September, 2004.

• A Systematic Approach to Composing and Optimizing
Application Workflows, by E. Deelman, A. Galstyan, Y. Gil, M. Hall, K. Lerman, A. Nakano,
P. Vashista, J. Saltz, In Workshop on Patterns in High Performance Computing, Urbana-Champaign, May,
2005

• A Systematic Approach to Model-Guided Empirical Search for
Memory Hierarchy Optimization, by C. Chen, J. Chame, M. Hall, K. Lerman, In
Proceedings of the Workshop on Languages, Compilers for Parallel Computing , October, 2005

