
Library Generators and
Program Optimization

María Garzarán and David Padua
Department of Computer Science
University of Illinois at Urbana-Champaign

Libraries and Productivity

Building libraries is one of the earliest
strategies to improve productivity.

Functionality
Performance

Libraries are particularly important for
performance

High performance is difficult to attain and not
portable.

Compilers vs. Libraries in Sorting

~2
X

~2
X

Compilers versus libraries in DFT

Compilers vs. Libraries in
Matrix-Matrix Multiplication (MMM)

Libraries and Productivity

Libraries are not a universal solution.
Not all algorithms implemented.
Not all data structures.

Automatic generation of libraries should
improve the situation by

Reducing implementation cost
For a fixed cost, enabling a wider range of
implementations and thus make libraries more
usable.

Today’s Library Generators

Generator

HLL routine

Source-to-source
optimizer

HLL routine

Native compiler

[Algorithm description]

Object code Execution

pe
rfo

rm
an

ce

Final
HLL routine

Search strategy

Important research issues

Infrastructure library generators.
Backend compiler specialized for “a few” classes of
problems

Learning about search strategies.
Reducing search time with minimal impact on performance.

Adaptation to the input data (not needed for dense
linear algebra, FFTs)
Tuning in context.
More flexible generators

algorithms
data structures
classes of target machines

An infrastructure for library generators
High Level
Specification
(Domain Specific
Language (DSL))

Signal processing
formula

Linear algebra
Algorithm in declarative

language

PARAMETERIZATION
FOR

SIGNAL PROCESSING

PROGRAM
GENERATOR FOR

SORTING

PARAMETERIZATION
FOR

LINEAR ALGEBRA

X code with
search directives

Specialized
Backend
compiler

ExecutableRun

Selection Strategy

Reflective optimization

X: An intermediate representation for
black belt macho programmers and library
generators

Language directives to specify in a compact
form the search space and the search
procedure.
Three classes of directives.

Specification of program transformations
(rewriting rules)
Application of program transformations
Search strategy

Sebastien Donadio, James Brodman, Thomas Roeder, Kamen Yotov, Denis Barthou, Albert Cohen, Maria Jesus Garzaran,

David Padua, and Keshav Pingali A Language for the Compact Representation of Multiple Program Versions. LCPC 2005

Search strategies

Numerous possibilities
Exhaustive search
Random
Hill climbing
Genetic algorithms
Simplex

A possible strategy: explanation-based
learning

Use understanding of expected behavior to
search for optimal point.

Arkady Epshteyn, Maria Garzaran, Gerald DeJong, David Padua, Gang Ren, Xiaoming Li, Kamen Yotov,
and Keshav Pingali Analytic Models and Empirical Search: A Hybrid Approach to Code Optimization. LCPC 2005

Three library generation
projects

1. Spiral and the impact of compilers
2. ATLAS and analytical model
3. Sorting and adaptation to the input

Sorting

Xiaoming Li, María Jesús Garzarán, and David Padua. Optimizing Sorting with
Genetic Algorithms. In Proc. of the International Symposium on Code Generation
and Optimization, pages 99-110, March 2005.

ESSL on Power3

ESSL on Power4

Motivation

No universally best sorting algorithm

Can we automatically generate and tune
sorting algorithms for each platform ?
Performance of sorting depends not only on
the platform but also on the input
characteristics.

A first strategy: Algorithm Selection

Select the best algorithm from Quicksort,
Multiway Merge Sort and CC-radix.

Relevant input characteristics: number of
keys, entropy vector.

Algorithm Selection

Algorithm selection for sparse banded
solvers

We have applied this approach to SPIKE, a
parallel environment for solving banded linear
systems.(A. Sameh, E. Polizzi, Purdue U.)

Many algorithms choices.
Best choice depends on characteristics of the
input matrix (bandwidth, degree of diagonal
dominance, size of the matrix) and number of
processors.
During installation time we build a table to
select the best algorithm at runtime.

A better Solution

We can use different algorithms for different
partitions
Build Composite Sorting algorithms

Identify primitives from the sorting algorithms
Design a general method to select an appropriate
sorting primitive at runtime
Design a mechanism to combine the primitives
and the selection methods to generate the
composite sorting algorithm

Performance of Classifier Sorting

Power4

Sorting

Again divide-and conquer.
But could not find formulas like Spiral.
Adaptation to input data crucial.

Need to deal with other features of the input data
– degree of “sortedness”

Conclusions

Much exploratory work today
General principles are emerging, but much
remains to be done.
This new exciting area of research should
teach us much about program optimization.

