
 1CASCCASC

ROSE Compiler Infrastructure
Source-to-Source Analysis and Optimization

Dan Quinlan
Rich Vuduc, Qing Yi, Markus Schordan

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract W-7405-
Eng-48.

 2CASCCASC

Overview

 ROSE Compiler Infrastructure
 Research Objectives

—General Optimization of existing applications
—Optimization of High-Level Abstractions

–Telescoping Language
–Plus/Minus Languages
–Many other names for this

—Empirical Optimization
 Targets non-compiler audience
 Emphasis on whole program capabilities
 Open Source (EDG part as binary)
 Conclusions

 3CASCCASC

Motivation for Compiler Based Tools
 Current Status:

— DOE generates huge amounts of software
— ROSE provides a mechanism to automatically read, analyze,

and fully rewrite ASC scale software in C, C++ (and eventually
F90 as part of collaboration with Rice, we hope).

 ROSE Project focus IS on optimization

But a lot of tools could be built …,
 Simple tools can only discover superficial things about software,

to really know what is going on in an application you need a
compiler infrastructure.

 4CASCCASC

ROSE Source-to-Source Approach

Vendor’s Compiler

EDG C++ Front-end (EDG AST)

SAGE C++ AST
(ROSETTA C++ AST Restructuring Tool)

AST Analysis and Transformation

ROSE Unparser

Optimized C++ Source Code

Recognition of High-Level Abstractions
by Construction of Hierarchy of ASTs

ROSETTA C++ High-Level AST Restructuring Tool

Tr
an

sl
at

or
 B

ui
lt

U
si

ng
R

O
S

E

Executable

Source Code

•ROSE Translator acts just like the vendor compiler
•Replaces compiler in application’s Makefile

 5CASCCASC

 Software analysis and optimization for scientific applications
 Tool for building source-to-source translators
 Support for C and C++
 F90 in development
 Loop optimizations
 Lab and academic use
 Software engineering
 Performance analysis
 Domain-specific analysis and optimizations
 Development of new optimization approaches
 Optimization of object-oriented abstractions

ROSE Project

 6CASCCASC

Program Analysis and Optimization
 Program Analysis (most are from Qing + contributions from students)

— Call graph
–Resolution of function pointers
–Resolution of Virtual functions
–Resolution of pointers to virtual functions

— Dependence (procedural)
— Control Flow (working on inter-procedural case)
— Slicing (inter-procedural)
— Partial Redundancy Elimination (PRE)
— Connection to Open Analysis (work with ANL)

 Optimizations
— Loop Optimization (Qing Yi)

–Loop fusion, fission, blocking, unroling, array copy, etc.
–inlining and outlining

— Annotation Based Optimizations
— Custom optimizations

–Define your own optimization (high level or low level)

 7CASCCASC

Automated Recognition
(Library Abstractions and other things)

int main() {

 Range I(1,98,1),J(1,98,1);

 doubleArray A(100,100);

 doubleArray B(100,100);

 A(I,J) = B(I+1,J)+B(I-1,J)

 +B(I,J+1)+B(I,J-1);

 return 0;

}

Even performance information is
in the AST (HPC Toolkit, RICE)

 8CASCCASC

ROSE Whole Application Analysis
Three Separate source files (ASTs)

Merged ASTs save space and permit whole
ASC scale application analysis

Supports Whole Program Analysis
(Alternative to SQLite Interface)

•Shares AST nodes
•Preserves simplicity
•Preserves all analysis info
•Simple tools work on whole ASC
applications
•Supports hundreds of source files
•Supports million line applications

 9CASCCASC

Large-Scale Application Support
 Call Graph Analysis
 Scaling up existing analysis

 10CASCCASC

Automated Generation of Symbolic Equations
for building Application Models

// Count -controlled loop complexity:

// 19+13*loop_expression0x8217f78+4*loop_expression0x8217f78^2+

// 19*loop_expression0x8217fa0+10*loop_expression0x8217fa0^2

int foobar(int bound1, int bound2)

 {

 for (int i = 0; i < bound1; i++)

 {

 array[i] = 0;

 for (int j = 0; j < bound1; j++)

 {

 x = 0;

 }

 }

 for (int i = 0; i < bound2; i++)

 {

 array[i] = array[i -1] + array[i+1] ;

 for (int j = 0; j < bound2; j++)

 {

 x = 0;

 }

 }

 return x;

 }

// Count -controlled loop complexity:

// 8+13*loop_expression0x8217 f78^3+4*loop_expression0x8217f78^4 +

int main()

 {

 for (int i = 0; i < bound; i++)

 {

 array[i] = 0;

 for (int j = 0; j < bound; j++)

 {

 x = foobar(bound,bound);

 }

 }

 return 0;

 }

 11CASCCASC

Unparsed Example
Preserves formatting, comments, and preprocessor control structure

#include "A++.h"
#include "../include/ROSE_TRANSFORMATION_SOURCE.h"
#include <iostream.h>

int main() {

 int x = 4;

 //these comments are difficult
 for (int i = 0; i < 10; i++) {
 while (x) {
 x = x + 1;

 if (false) { x++; x = 7+x; }
 else {
 x = x - 1;
 x--;
 }

 // comments!
 x++;
 x += 1;
 }
 }
 return 0;
}

#include "A++.h"
#include "../include/ROSE_TRANSFORMATION_SOURCE.h"
#include <iostream.h>

int main(){

 int x=4;

 //these comments are difficult
 for (int i=0; i < 10; i++){

 while(x){
 x = x + 1;

 if (false){ x++; x = 7 + x; }
 else {
 x = x - 1;
 x--;

 }

 // comments!

 x++;
 x += 1;
 }

 }
 return 0;
}

Original Input C++ Source code Unparsed Output C++ Source code

 12CASCCASC

Interactions with Others
•DOE Laboratories:

•LLNL (A-Div (Kull), B-Div (IRS), Mark Graff, TSTT, Overture, Babel)
•ANL (Paul Hovland)
•ORNL

•DOE Research Programs:
•PERC (SLAC, TSTT, C/C++ Optimization, UT, ANL, Dyninst Binary Rewriting)

•Collaborations:
•IBM Haifa (Shmuel Ur)
•Texas A&M (Lawrence Rauchwerger, Bjarne Stroustrup)
•Rice University (Ken Kennedy, John Mellnor-Crummey)
•Vienna University of Technology (Markus Schordan)
•University of Tennessee (Jack Dongarra’s group)
•Cornell University (Sally McKee, Brian White)
•Indiana University (Andrew Lumsdaine, Jeremiah Willcock)
•University of California at Berkeley (UPC, Kathy Yelick)
•University of Oslo (Hans, Andreas, Are)
•University of Maryland (Jeff Hollingsworth, Chadd Williams)
•Friedrich-Alexander-University Erlangen-Nuremberg (Markus Kowarschik, Nils Thurey)
•University of Texas at Austin (Calvin Lin)
•USCD (Scott Baden)
•London Imperial College (Olav Beckman, Paul Kelly)
•UC Davis (Su, Bishop)

