
Adaptive Inlining

Keith D. Cooper Timothy J. Harvey
Todd Waterman

Department of Computer Science
Rice University
Houston, TX

Adaptive Compilation
• Iterative process

— Compile with initial set of
decisions

— Evaluate code
— Use previous decisions and

results to guide new
decisions

— Repeat until…

Compiler

Objective
Function

Adaptive
Controller

Prior Work on Adaptive Compilation
• Big focus on order of optimizations

—Intermediate optimizations can be applied in any possible order
—Historically, the compiler writer selects a single, universal sequence

of optimizations
—Different sequences perform better for different programs
—Use adaptive techniques to find a good sequence for a specific

program (LACSI ‘04)

Objective
function

Executable
codeFront end

Steering
Algorithm

Single-optimization adaptive techniques
• Can we use adaptive techniques to improve the performance of

individual optimizations?
—Need “flexible” optimizations

– Expose a variety of decisions that impact the optimization’s
performance

– Different sets of decisions work better for different programs
—Need to understand how to explore the space of decisions

• We examine procedure inlining
—A poorly understood, complex, problem

– Many different approaches and heuristics have been used
– Mixed success that varies by input program
– Potential for major improvements

Procedure Inlining
• Procedure inlining replaces a call

site with the body of the
procedure

• Wide variety of effects
—Eliminates call overhead
—Increases program size
—Enables other optimizations
—Changes register allocations
—Cache performance

• Decisions are not independent

int f() {
 int a = g(1);
 return a;
}

int g(x) {
 if (x == 0)
 return 0;
 else
 return x+1;
}

int f() {
 int a;
 if (1 == 0)
 a = 0;
 else
 a = 1 + 1;
 return a;
}

int g(x) {
 if (x == 0)
 return 0;
 else
 return x+1;
}int f() {

 return 2;
}

Building the Inliner
• Built on top of Davidson and Holler’s INLINER tool

—Source-to-source C inliner
—Need to modernize for ANSI C

• Parameterize the inliner
—Find parameters that can positively impact inlining decisions
—Group parameters together in condition strings

– Specified at the command line
– Use CNF
– Example: inliner -c “sc < 25 | lnd > 0, sc < 100” foo.c

Condition String Properties
• Statement count
• Loop nesting depth
• Static call count

—If the static call count is one, inlining can be performed without
increasing the code size

• Constant parameter count
—Used to estimate the potential for enhancing optimizations

• Calls in the procedure
—Introduced as a method for finding leaf procedures

• Dynamic call count

Preliminary Searches
• Perform one and two dimensional sweeps of the space

—Get an idea of what the space looks like
—Determine which parameters have a positive impact on performance

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

2
2
0

2
4
0

2
6
0

2
8
0

3
0
0

0

2

4

14

15

16

17

18

19

20

21

Time (s)

Max SC inlined

CPC >= x

Vortex: Using CPC and SC

20-21

19-20

18-19

17-18

16-17

15-16

14-15

Running time of Vortex varying SC

15

16

17

18

19

20

21

22

23

24

0 10 20 30 40 50 60 70 80 90 100

Max. Statement Count Inlined

T
im

e
 (

s
e
c
)

Results of Preliminary Searches
• Provided insight into the value of certain parameters

—Calls in a procedure (CLC) and constant parameter count (CPC)
proved very effective

—Parameter count (PC) had little effect

• A hill climber is a good method for exploring the space
—Relatively smooth search space
—Was effective for optimization ordering work

• Bad sets of inlining decisions are expensive
—Example: “clc < 3” provides great performance for Vortex, “clc < 4”

exhausts memory during compilation
—Unavoidable to some extent

Constraining the Search Space
• Search space is immense

—Many possible combinations of parameters
—A large number of possible values for certain parameters

• Need to constrain the search space
—Eliminate obviously poor sets of decisions

– Often the most time consuming as well
—Make the search algorithm more efficient

• Fix the form of the condition string:
 “sc < A | sc < B, lnd > 0 | sc < C, scc = 1 | clc < D | cpc > E, sc < F | dcc > G”

—Constrains the number of combinations and eliminates foolish
possibilities

—Still need to constrain the values of the individual parameters

Constraining Parameters
• Need reasonable minimum and maximum values

—Easy case: parameters that have a limited range regardless of
program (CPC & CLC)

—Hard case: parameters that need to vary based on the program
– General idea

 minimum value: no inlining will occur from the parameter
 maximum value: maximal amount of inlining

– Statement count
 Set minimum value to 0
 Begin with a small value and increase until an unreasonable

amount of inlining occurs for maximum value
– Dynamic call count

 Set maximum value to the highest observed DCC
 Repeatedly decrease to find minimum value

Constraining Parameters
• Need reasonable granularity for the range of parameters

—Some parameters can have extremely large ranges
—Linear distribution of values doesn’t work well

– Not uniform spaces
– Want a smaller step value for smaller values

—Purely quadratic has problems as well
– Values too close at the low end

• Have a fixed number of ordinals for large ranges (20)
• Use quadratic equation with linear term to get value

Building the Hill Climber
• Each possible condition string is a point in the search space

—Neighbors are strings with a single parameter increased or
decreased by one ordinal (14 neighbors for each point)

• Hill climber descends to a local minimum
—Examine neighbors until a better point is found and descend to that

point
—Evaluate points using a single execution of the code

– Experiments show a single execution to be sufficient
—Cutoff bad searches

• Perform multiple descents from random start points
• Try using limited patience

—Only explore a percentage of the neighbors before giving up
—Tradeoff the quality of a descent for the ability to perform more

Selection of Start Points
• Problem: Many possible start points are unsuitable

—Massive amounts of inlining occur
—Parameter bounds are designed to be individually reasonable but the

combination can be unreasonable

• Solution: Limit start points to a subset of the total space
—Require start points to have the property:

pa
2 + pb

2 + … < (max. ord)2
—Much more successful in finding start points
—Creates tendancy to go from less inlinining to more inlining

– Faster searches
– Prioritizes solutions with less code growth

Experimental Setup
• Used a 1 GHz G4 PowerMac

—Running OS X server
—256kB L2 cache, 2MB L3 cache

• Tested using several SpecINT C benchmarks
—Vortex - object oriented database program
—Bzip2, Gzip - compression programs
—Parser - recursive descent parser
—Mcf - vehicle scheduling

Changing Patience
• Comparison using HC with varying levels of patience on Vortex

14.2

14.4

14.6

14.8

15

15.2

15.4

0 100 200 300 400 500 600 700

Evaluations

R
u

n
n

in
g

 t
im

e
 o

f
fi

n
a
l

c
o

d
e

100% patience 50% patience 25% patience

Normalized Execution Time
• Comparison of HC with 5-descents and 100% patience against

no inlining and the GCC inliner

0

20

40

60

80

100

120

Vortex Parser Bzip2 Gzip Mcf

Benchmark

N
o

r
m

a
li

z
e
d

 T
im

e

No Inlining GCC Inlining Adaptive Inlining

Descents Chosen
• Percentage each neighbor was chosen when a downward step was

found by the hill climber

0.00%9.82%4.63%10.11%3.82%DCC Decreased
0.00%0.61%1.85%4.26%18.85%DCC Increased
0.00%2.45%0.00%0.53%3.34%CPC SC Decreased
0.00%4.91%0.00%3.19%6.44%CPC SC Increased
1.16%14.72%4.63%1.59%4.06%CPC Decreased
2.33%6.13%2.78%5.32%3.58%CPC Increased
2.33%0.61%2.78%2.12%3.82%CLC Decreased
2.33%6.13%8.33%4.26%3.82%CLC Increased

12.04%
23.15%

1.85%
0.93%

21.30%
15.74%

Bzip2

8.51%
10.11%

8.51%
10.64%
19.68%
11.17%

Parser

20.93%6.75%13.60%SCC SC Increased
34.88%7.36%5.25%SCC SC Decreased

3.49%5.52%8.35%Loop SC Decreased
1.16%2.45%8.11%Loop SC Increased

22.10%15.95%9.07%SC Decreased
9.30%16.56%7.88%SC Increased

McfGzipVortexStep

Conclusions
• Adaptive Inlining

—Gets consistent improvement across programs
– Magnitude limited by opportunity

—Static techniques cannot compete
– Results suggest against a universal static solution

• Adaptive Compilation
—Design the optimization to expose opportunity for adaptivity
—Understand the search space
—Build the adaptive system accordingly

