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Adaptive Compilation

Iterative process

Compile with initial set of
decisions

Evaluate code

Use previous decisions and
results to guide new
decisions

Repeat until...
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Prior Work on Adaptive Compilation

* Big focus on order of optimizations

—Intermediate optimizations can be applied in any possible order
— Historically, the compiler writer selects a single, universal sequence

of optimizations

—Different sequences perform better for different programs
—Use adaptive techniques to find a good sequence for a specific

program (LACST '04)
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Single-optimization adaptive techniques

* Can we use adaptive techniques to improve the performance of
individual optimizations?
—Need "flexible” optimizations

- Expose a variety of decisions that impact the optimization's
performance

- Different sets of decisions work better for different programs
—Need to understand how to explore the space of decisions

* We examine procedure inlining
— A poorly understood, complex, problem
- Many different approaches and heuristics have been used
- Mixed success that varies by input program
- Potential for major improvements
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Procedure Inlining

Procedure inlining replaces a call
site with the body of the
procedure

Wide variety of effects
—Eliminates call overhead

— Increases program size
—Enables other optimizations
—Changes register allocations
— Cache performance

Decisions are not independent

int f() {
inta =g(1);
return a;

}

int g(x) {
if (x ==0)
return O;
else
return x+1;

}

int f() {

return 2;

}

int f() {
int a;
if (1 ==0)
a=0;
else
a=1+1;
return a;

}

int g(x) {
if (x ==0)
return O;
else

/ return x+1:

}
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Building the Inliner

* Built on top of Davidson and Holler's INLINER tool
— Source-to-source C inliner
—Need to modernize for ANSI C

* Parameterize the inliner
—Find parameters that can positively impact inlining decisions
—Group parameters together in condition strings
- Specified at the command line
- Use CNF
- Example: inliner -c “sc < 25 | Ind > 0, sc < 100" foo.c
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Condition String Properties

* Statement count
* Loop nesting depth

* Static call count

—If the static call count is one, inlining can be performed without
increasing the code size

* Constant parameter count
—Used to estimate the potential for enhancing optimizations

* Calls in the procedure
—Introduced as a method for finding leaf procedures

* Dynamic call count
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Preliminary Searches

* Perform one and two dimensional sweeps of the space
—Get an idea of what the space looks like
— Determine which parameters have a positive impact on performance

Running time of Vortex varying SC Vortex: Using CPC and SC
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Results of Preliminary Searches

* Provided insight into the value of certain parameters

—Calls in a procedure (CLC) and constant parameter count (CPC)
proved very effective

—Parameter count (PC) had little effect

* A hill climber is a good method for exploring the space
—Relatively smooth search space
—Was effective for optimization ordering work

* Bad sets of inlining decisions are expensive

—Example: “clc < 3" provides great performance for Vortex, “clc < 4"
exhausts memory during compilation

— Unavoidable to some extent
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Constraining the Search Space

* Search space is immense
— Many possible combinations of parameters
— A large number of possible values for certain parameters

* Need to constrain the search space
—Eliminate obviously poor sets of decisions
- Often the most time consuming as well
—Make the search algorithm more efficient

* Fix the form of the condition string:
"sc < A|sc<B,Ind>0]|sc<C,scc=1]|clc<D|cpc>E, sc <F|dcc>6"

— Constrains the number of combinations and eliminates foolish
possibilities
— Still need to constrain the values of the individual parameters

LACSIa»



Constraining Parameters

* Need reasonable minimum and maximum values

—Easy case: parameters that have a limited range regardless of
program (CPC & CLC)

—Hard case: parameters that need to vary based on the program
- General idea
minimum value: no inlining will occur from the parameter
maximum value: maximal amount of inlining
- Statement count
Set minimum value to O

Begin with a small value and increase until an unreasonable
amount of inlining occurs for maximum value

- Dynamic call count
Set maximum value to the highest observed DCC
Repeatedly decrease to find minimum value
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Constraining Parameters

* Need reasonable granularity for the range of parameters
—Some parameters can have extremely large ranges
—Linear distribution of values doesn't work well
- Not uniform spaces
- Want a smaller step value for smaller values
—Purely quadratic has problems as well
- Values too close at the low end

* Have a fixed number of ordinals for large ranges (20)
* Use quadratic equation with linear term to get value
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Building the Hill Climber

* Each possible condition string is a point in the search space

—Neighbors are strings with a single parameter increased or
decreased by one ordinal (14 neighbors for each point)
Hill climber descends to a local minimum

—Examine neighbors until a better point is found and descend to that
point

—Evaluate points using a single execution of the code
- Experiments show a single execution to be sufficient
— Cutoff bad searches

Perform multiple descents from random start points

Try using limited patience
—Only explore a percentage of the neighbors before giving up
— Tradeoff the quality of a descent for the ability to perform more
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Selection of Start Points

* Problem: Many possible start points are unsuitable
— Massive amounts of inlining occur
—Parameter bounds are designed to be individually reasonable but the
combination can be unreasonable
* Solution: Limit start points to a subset of the total space
—Require start points to have the property:
P2 + P2 + .. < (max. ord)?
— Much more successful in finding start points
—Creates tendancy to go from less inlinining fo more inlining
- Faster searches
- Prioritizes solutions with less code growth
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Experimental Setup

* Used a 1 GHz 64 PowerMac
—Running OS X server
—256kB L2 cache, 2MB L3 cache

* Tested using several SpecINT C benchmarks
—Vortex - object oriented database program
—Bzip2, 6zip - compression programs
—Parser - recursive descent parser
—Mcf - vehicle scheduling
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Changing Patience

* Comparison using HC with varying levels of patience on Vortex

Running time of final code
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Normalized Execution Time

* Comparison of HC with 5-descents and 100% patience against
no inlining and the GCC inliner
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Descents Chosen

* Percentage each neighbor was chosen when a downward step was
found by the hill climber

Step Vortex | Parser | Bzip2 Gzip Mcf
SC Increased 7.88% | 11.17% | 15.74% | 16.56% 9.30%
SC Decreased 9.07% | 19.68% | 21.30% | 15.95% | 22.10%
Loop SC Increased 8.11% | 10.64% 0.93% 2.45% 1.16%
Loop SC Decreased 8.35% 8.51% 1.85% 5.52% 3.49%
SCC SC Increased 13.60% | 10.11% | 23.15% 6.75% | 20.93%
SCC SC Decreased 5.25% 8.51% | 12.04% 7.36% | 34.88%
CLC Increased 3.82% 4.26% 8.33% 6.13% 2.33%
CLC Decreased 3.82% 2.12% 2.78% 0.61% 2.33%
CPC Increased 3.58% 5.32% 2.78% 6.13% 2.33%
CPC Decreased 4.06% 1.59% 4.63% | 14.72% 1.16%
CPC SC Increased 6.44% 3.19% 0.00% 4.91% 0.00%
CPC SC Decreased 3.34% 0.53% 0.00% 2.45% 0.00%
DCC Increased 18.85% 4.26% 1.85% 0.61% 0.00%
DCC Decreased 3.82% | 10.11% 4.63% 9.82% 0.00%
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Conclusions

* Adaptive Inlining
—Gets consistent improvement across programs
- Magnitude limited by opportunity
— Static techniques cannot compete
- Results suggest against a universal static solution

* Adaptive Compilation
— Design the optimization to expose opportunity for adaptivity
—Understand the search space
—Build the adaptive system accordingly

LACSIa»



