Adaptive Inlining

Keith D. Cooper Timothy J. Harvey
Todd Waterman

Department of Computer Science
Rice University
Houston, TX

LACSIa»

Adaptive Compilation

Iterative process

Compile with initial set of
decisions

Evaluate code

Use previous decisions and
results to guide new
decisions

Repeat until...

LACSIa»

Prior Work on Adaptive Compilation

* Big focus on order of optimizations

—Intermediate optimizations can be applied in any possible order
— Historically, the compiler writer selects a single, universal sequence

of optimizations

—Different sequences perform better for different programs
—Use adaptive techniques to find a good sequence for a specific

program (LACST '04)

[

\

Front end _ ,\\ T /‘ =

Executable
code

Steering
Algorithm

Objective
function

.

LACSIa»

Single-optimization adaptive techniques

* Can we use adaptive techniques to improve the performance of
individual optimizations?
—Need "flexible” optimizations

- Expose a variety of decisions that impact the optimization's
performance

- Different sets of decisions work better for different programs
—Need to understand how to explore the space of decisions

* We examine procedure inlining
— A poorly understood, complex, problem
- Many different approaches and heuristics have been used
- Mixed success that varies by input program
- Potential for major improvements

LACSIa»

Procedure Inlining

Procedure inlining replaces a call
site with the body of the
procedure

Wide variety of effects
—Eliminates call overhead

— Increases program size
—Enables other optimizations
—Changes register allocations
— Cache performance

Decisions are not independent

int f() {
inta =g(1);
return a;

}

int g(x) {
if (x ==0)
return O;
else
return x+1;

}

int f() {

return 2;

}

int f() {
int a;
if (1 ==0)
a=0;
else
a=1+1;
return a;

}

int g(x) {
if (x ==0)
return O;
else

/ return x+1:

}

LACSIa»

Building the Inliner

* Built on top of Davidson and Holler's INLINER tool
— Source-to-source C inliner
—Need to modernize for ANSI C

* Parameterize the inliner
—Find parameters that can positively impact inlining decisions
—Group parameters together in condition strings
- Specified at the command line
- Use CNF
- Example: inliner -c “sc < 25 | Ind > 0, sc < 100" foo.c

LACSIa»

Condition String Properties

* Statement count
* Loop nesting depth

* Static call count

—If the static call count is one, inlining can be performed without
increasing the code size

* Constant parameter count
—Used to estimate the potential for enhancing optimizations

* Calls in the procedure
—Introduced as a method for finding leaf procedures

* Dynamic call count

LACSIa»

Preliminary Searches

* Perform one and two dimensional sweeps of the space
—Get an idea of what the space looks like
— Determine which parameters have a positive impact on performance

Running time of Vortex varying SC Vortex: Using CPC and SC

24

23 ’_,\
22

~~
2 \
@ 20 20-21
~ 019-20
] /\/\ m18-19
£ 19 \ 017-18
[016-17
H15-16
18 \ \’VM m14-15
) A\\M/'\/\,\ JA\J \/
» /M
15 T T T T T T T T T 2
o
0 10 20 30 40 50 60 70 80 90 100 =

Max. Statement Count Inlined

LACSIa»

Results of Preliminary Searches

* Provided insight into the value of certain parameters

—Calls in a procedure (CLC) and constant parameter count (CPC)
proved very effective

—Parameter count (PC) had little effect

* A hill climber is a good method for exploring the space
—Relatively smooth search space
—Was effective for optimization ordering work

* Bad sets of inlining decisions are expensive

—Example: “clc < 3" provides great performance for Vortex, “clc < 4"
exhausts memory during compilation

— Unavoidable to some extent

LACSIa»

Constraining the Search Space

* Search space is immense
— Many possible combinations of parameters
— A large number of possible values for certain parameters

* Need to constrain the search space
—Eliminate obviously poor sets of decisions
- Often the most time consuming as well
—Make the search algorithm more efficient

* Fix the form of the condition string:
"sc < A|sc<B,Ind>0]|sc<C,scc=1]|clc<D|cpc>E, sc <F|dcc>6"

— Constrains the number of combinations and eliminates foolish
possibilities
— Still need to constrain the values of the individual parameters

LACSIa»

Constraining Parameters

* Need reasonable minimum and maximum values

—Easy case: parameters that have a limited range regardless of
program (CPC & CLC)

—Hard case: parameters that need to vary based on the program
- General idea
minimum value: no inlining will occur from the parameter
maximum value: maximal amount of inlining
- Statement count
Set minimum value to O

Begin with a small value and increase until an unreasonable
amount of inlining occurs for maximum value

- Dynamic call count
Set maximum value to the highest observed DCC
Repeatedly decrease to find minimum value

LACSIa»

Constraining Parameters

* Need reasonable granularity for the range of parameters
—Some parameters can have extremely large ranges
—Linear distribution of values doesn't work well
- Not uniform spaces
- Want a smaller step value for smaller values
—Purely quadratic has problems as well
- Values too close at the low end

* Have a fixed number of ordinals for large ranges (20)
* Use quadratic equation with linear term to get value

LACSIa»

Building the Hill Climber

* Each possible condition string is a point in the search space

—Neighbors are strings with a single parameter increased or
decreased by one ordinal (14 neighbors for each point)
Hill climber descends to a local minimum

—Examine neighbors until a better point is found and descend to that
point

—Evaluate points using a single execution of the code
- Experiments show a single execution to be sufficient
— Cutoff bad searches

Perform multiple descents from random start points

Try using limited patience
—Only explore a percentage of the neighbors before giving up
— Tradeoff the quality of a descent for the ability to perform more

LACSIa»

Selection of Start Points

* Problem: Many possible start points are unsuitable
— Massive amounts of inlining occur
—Parameter bounds are designed to be individually reasonable but the
combination can be unreasonable
* Solution: Limit start points to a subset of the total space
—Require start points to have the property:
P2 + P2 + .. < (max. ord)?
— Much more successful in finding start points
—Creates tendancy to go from less inlinining fo more inlining
- Faster searches
- Prioritizes solutions with less code growth

LACSIa»

Experimental Setup

* Used a 1 GHz 64 PowerMac
—Running OS X server
—256kB L2 cache, 2MB L3 cache

* Tested using several SpecINT C benchmarks
—Vortex - object oriented database program
—Bzip2, 6zip - compression programs
—Parser - recursive descent parser
—Mcf - vehicle scheduling

LACSIa»

Changing Patience

* Comparison using HC with varying levels of patience on Vortex

Running time of final code

15.4

15.2

[ay
6]
|

14.8 -

14.6 -

14.4

14.2

—— 100% patience

50% patience —+— 25% patience

1

N\

100

200

300 400
Evaluations

500

600

700

LACSIa»

Normalized Execution Time

* Comparison of HC with 5-descents and 100% patience against
no inlining and the GCC inliner

120

B No Inlining OGCC Inlining ®EAdaptive Inlining

100 -

Normalized Time
[e))
o

Vortex Parser Bzip2 Gzip Mcf

Benchmark

LACSIa»

Descents Chosen

* Percentage each neighbor was chosen when a downward step was
found by the hill climber

Step Vortex | Parser | Bzip2 Gzip Mcf
SC Increased 7.88% | 11.17% | 15.74% | 16.56% 9.30%
SC Decreased 9.07% | 19.68% | 21.30% | 15.95% | 22.10%
Loop SC Increased 8.11% | 10.64% 0.93% 2.45% 1.16%
Loop SC Decreased 8.35% 8.51% 1.85% 5.52% 3.49%
SCC SC Increased 13.60% | 10.11% | 23.15% 6.75% | 20.93%
SCC SC Decreased 5.25% 8.51% | 12.04% 7.36% | 34.88%
CLC Increased 3.82% 4.26% 8.33% 6.13% 2.33%
CLC Decreased 3.82% 2.12% 2.78% 0.61% 2.33%
CPC Increased 3.58% 5.32% 2.78% 6.13% 2.33%
CPC Decreased 4.06% 1.59% 4.63% | 14.72% 1.16%
CPC SC Increased 6.44% 3.19% 0.00% 4.91% 0.00%
CPC SC Decreased 3.34% 0.53% 0.00% 2.45% 0.00%
DCC Increased 18.85% 4.26% 1.85% 0.61% 0.00%
DCC Decreased 3.82% | 10.11% 4.63% 9.82% 0.00%

LACSIa»

Conclusions

* Adaptive Inlining
—Gets consistent improvement across programs
- Magnitude limited by opportunity
— Static techniques cannot compete
- Results suggest against a universal static solution

* Adaptive Compilation
— Design the optimization to expose opportunity for adaptivity
—Understand the search space
—Build the adaptive system accordingly

LACSIa»

