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Motivation for Tuning Sparse Matrices

• Sparse matrix kernels can dominate solver time
– Sparse matrix-vector multiply (SpMV)
– SpMV: runs at < 10% of peak

• Improving SpMV’s performance is hard
– Performance depends on machine, kernel, matrix
– Matrix known only at run-time
– Best data structure + implementation can be surprising
– Tuning becoming more difficult over time

• Approach: Empirical modeling and search
– Off-line benchmarking + run-time models
– Up to 4x speedups and 31% of peak for SpMV
– Other kernels: 1.8x triangular solve, 4x ATA⋅x, 2x A2⋅x



OSKI: Optimized Sparse Kernel Interface

• Sparse kernels tuned for user’s matrix & machine
– Hides complexity of run-time tuning 
– Low-level BLAS-style functionality
– Includes fast locality-aware kernels: ATA⋅x, Ak⋅x …
– Initial target: cache-based superscalar uniprocessors

• Target users: “advanced” users & solver library writers
• Current focus on uniprocessor tuning

– Shared/distributed memory versions in progress

• Open-source (BSD) C library
– 1.0 available:  bebop.cs.berkeley.edu/oski
– Being integrated into PETSc



Matrix-vector multiply kernel: y(i) y(i) + A(i,j)⋅x(j)Matrix-vector multiply kernel: y(i) y(i) + A(i,j)⋅x(j)

for each row i
for k=ptr[i] to ptr[i+1] do

y[i] = y[i] + val[k]*x[ind[k]]

Compressed Sparse Row (CSR) Storage

Matrix-vector multiply kernel: y(i) y(i) + A(i,j)⋅x(j)

for each row i
for k=ptr[i] to ptr[i+1] do

y[i] = y[i] + val[k]*x[ind[k]]

Ay

x Representation of A



Example: The Difficulty of Tuning

• n = 21216
• nnz = 1.5 M
• kernel: SpMV

• Source: NASA 
structural analysis 
problem



Example: The Difficulty of Tuning

• n = 21216
• nnz = 1.5 M
• kernel: SpMV

• Source: NASA 
structural analysis 
problem

• 8x8 dense 
substructure



What We Expect

• Assume
– Cost(SpMV) = time to read matrix
– 1 double-word = 2 integers
– r, c in {1, 2, 4, 8}

• CSR: 1 int / non-zero
• BCSR(r x c): 1 int / (r*c non-zeros)
• As r*c increases, speedup should

– Increase smoothly
– Approach 1.5
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What We Get (The Need for Search)

Reference

Best: 4x2

Mflop/s

Mflop/s



SpMV Performance—raefsky3



SpMV Performance—raefsky3



Still More Surprises

• More complicated non-zero 
structure in general



Still More Surprises

• More complicated non-zero 
structure in general

• Example: 3x3 blocking
– Logical grid of 3x3 cells



Extra Work Can Improve Efficiency!

• More complicated non-zero 
structure in general

• Example: 3x3 blocking
– Logical grid of 3x3 cells
– Fill-in explicit zeros
– Unroll 3x3 block multiplies
– “Fill ratio” = 1.5

• On Pentium III: 1.5x speedup!



How OSKI Tunes (Overview)
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Example of a Tuning Heuristic

• Example: Selecting the r x c block size
– Off-line benchmark: characterize the machine

• Precompute Mflops(r,c) using dense matrix for each r x c
• Once per machine/architecture

– Run-time “search”: characterize the matrix
• Sample A to estimate Fill(r,c) for each r x c

– Run-time heuristic model
• Choose r, c to maximize Mflops(r,c) / Fill(r,c)

• Run-time costs
– Up to ~40 SpMVs (empirical worst case)
– Dominated by conversion
– May be amortized if pattern fixed



Accuracy of the Tuning Heuristics (1/4)

NOTE: “Fair” flops used (ops on explicit zeros not counted as “work”)

DGEMV



Accuracy of the Tuning Heuristics (2/4)
DGEMV

NOTE: “Fair” flops used (ops on explicit zeros not counted as “work”)



Calling OSKI: Interface Design

• Support “legacy applications”
– Gradual migration of apps to use OSKI

• Must call “tune” routine explicitly
– Exposes cost of tuning and data structure reorganization

• May provide tuning hints
– Structural: Hints about matrix
– Workload: Hints about frequency of calls, to limit tuning time

• May save/restore tuning results
– To apply on future runs with similar matrix
– Stored in “human-readable” format



Exploiting Problem-Specific Structure

• Optimizations for SpMV
– Register blocking (up to 4x over CSR)
– Variable block splitting (2.1x over CSR, 1.8x over RB)
– Diagonals (2x over CSR)
– Reordering to create dense structure + splitting (2x over CSR)
– Symmetry (2.8x over CSR, 2.6x over RB)
– Cache blocking (2.2x over CSR)
– Multiple vectors (7x over CSR)
– And combinations…

• Sparse triangular solve
– Hybrid sparse/dense data structure (1.8x over CSR)

• Higher-level kernels
– AAT⋅x, ATA⋅x (4x over CSR, 1.8x over RB)
– A2⋅x (2x over CSR, 1.5x over RB)



Example: Variable Block Structure

2.1x
over CSR

1.8x
over RB



Example: Row-Segmented Diagonals

2x
over CSR



Mixed Diagonal and Block Structure



Example: Sparse Triangular Factor

• Raefsky4 (structural 
problem) + SuperLU + 
colmmd

• N=19779, nnz=12.6 M

Dense trailing triangle: 
dim=2268, 20% of total 
nz

Can be as high as 90+%!
1.8x over CSR



Example applications

• T3P – Accelerator Design – Ko
– Register blocking, Symmetric Storage, Multiple vector
– 1.68x faster on Itanium 2 for one vector
– 4.4x faster for 8 vectors

• Omega3P – Accelerator Design – Ko
– Register blocking, Symmetric storage, Reordering
– 2.1x faster on Power4

• Semiconductor Industry: 
– 1.9x speedup over SPOOLES in CG at design firm

• Recent integration of OSKI into PETSc



Status and Future Work

• OSKI Release 1.0 and docs available                 
bebop.cs.berkeley.edu/oski

• Performance bounds modeling (ongoing)
• Future OSKI work

– Release of PETSc version with OSKI
– Better “low-level” tuning, including vectors
– Automatically tuned parallel sparse kernels

• Development of a new HPC Challenge Benchmark
– Evaluate platforms based on tuned (blocked) SpMV

performance
• Tuning higher level algorithms using Akx

– Models indicate large speedups possible


