
Automatic Tuning of Sparse Matrix
Kernels

Kathy Yelick
U.C. Berkeley and Lawrence Berkeley National Laboratory

Richard Vuduc, Lawrence Livermore National Laboratory
James Demmel, U.C. Berkeley
Berkeley Benchmarking and OPtimization (BeBOP) Group
bebop.cs.berkeley.edu

Motivation for Tuning Sparse Matrices

• Sparse matrix kernels can dominate solver time
– Sparse matrix-vector multiply (SpMV)
– SpMV: runs at < 10% of peak

• Improving SpMV’s performance is hard
– Performance depends on machine, kernel, matrix
– Matrix known only at run-time
– Best data structure + implementation can be surprising
– Tuning becoming more difficult over time

• Approach: Empirical modeling and search
– Off-line benchmarking + run-time models
– Up to 4x speedups and 31% of peak for SpMV
– Other kernels: 1.8x triangular solve, 4x ATA⋅x, 2x A2⋅x

OSKI: Optimized Sparse Kernel Interface

• Sparse kernels tuned for user’s matrix & machine
– Hides complexity of run-time tuning
– Low-level BLAS-style functionality
– Includes fast locality-aware kernels: ATA⋅x, Ak⋅x …
– Initial target: cache-based superscalar uniprocessors

• Target users: “advanced” users & solver library writers
• Current focus on uniprocessor tuning

– Shared/distributed memory versions in progress

• Open-source (BSD) C library
– 1.0 available: bebop.cs.berkeley.edu/oski
– Being integrated into PETSc

Matrix-vector multiply kernel: y(i) y(i) + A(i,j)⋅x(j)Matrix-vector multiply kernel: y(i) y(i) + A(i,j)⋅x(j)

for each row i
for k=ptr[i] to ptr[i+1] do

y[i] = y[i] + val[k]*x[ind[k]]

Compressed Sparse Row (CSR) Storage

Matrix-vector multiply kernel: y(i) y(i) + A(i,j)⋅x(j)

for each row i
for k=ptr[i] to ptr[i+1] do

y[i] = y[i] + val[k]*x[ind[k]]

Ay

x Representation of A

Example: The Difficulty of Tuning

• n = 21216
• nnz = 1.5 M
• kernel: SpMV

• Source: NASA
structural analysis
problem

Example: The Difficulty of Tuning

• n = 21216
• nnz = 1.5 M
• kernel: SpMV

• Source: NASA
structural analysis
problem

• 8x8 dense
substructure

What We Expect

• Assume
– Cost(SpMV) = time to read matrix
– 1 double-word = 2 integers
– r, c in {1, 2, 4, 8}

• CSR: 1 int / non-zero
• BCSR(r x c): 1 int / (r*c non-zeros)
• As r*c increases, speedup should

– Increase smoothly
– Approach 1.5

5.111

5.1
),(

, ⎯⎯ →⎯
+

≈= ∞=cr

BCSR

CSR

rc
crT

TSpeedup

What We Get (The Need for Search)

Reference

Best: 4x2

Mflop/s

Mflop/s

SpMV Performance—raefsky3

SpMV Performance—raefsky3

Still More Surprises

• More complicated non-zero
structure in general

Still More Surprises

• More complicated non-zero
structure in general

• Example: 3x3 blocking
– Logical grid of 3x3 cells

Extra Work Can Improve Efficiency!

• More complicated non-zero
structure in general

• Example: 3x3 blocking
– Logical grid of 3x3 cells
– Fill-in explicit zeros
– Unroll 3x3 block multiplies
– “Fill ratio” = 1.5

• On Pentium III: 1.5x speedup!

How OSKI Tunes (Overview)

Benchmark
data

1. Build for
Target
Arch.

2. Benchmark

Heuristic
models

1. Evaluate
Models

Generated
code

variants

2. Select
Data Struct.

& Code

Library Install-Time (offline) Application Run-Time

To user:
Matrix handle
for kernel
calls

Workload
from program

monitoring

Extensibility: Advanced users may write & dynamically add “Code variants” and “Heuristic models” to system.

History
Matrix

Example of a Tuning Heuristic

• Example: Selecting the r x c block size
– Off-line benchmark: characterize the machine

• Precompute Mflops(r,c) using dense matrix for each r x c
• Once per machine/architecture

– Run-time “search”: characterize the matrix
• Sample A to estimate Fill(r,c) for each r x c

– Run-time heuristic model
• Choose r, c to maximize Mflops(r,c) / Fill(r,c)

• Run-time costs
– Up to ~40 SpMVs (empirical worst case)
– Dominated by conversion
– May be amortized if pattern fixed

Accuracy of the Tuning Heuristics (1/4)

NOTE: “Fair” flops used (ops on explicit zeros not counted as “work”)

DGEMV

Accuracy of the Tuning Heuristics (2/4)
DGEMV

NOTE: “Fair” flops used (ops on explicit zeros not counted as “work”)

Calling OSKI: Interface Design

• Support “legacy applications”
– Gradual migration of apps to use OSKI

• Must call “tune” routine explicitly
– Exposes cost of tuning and data structure reorganization

• May provide tuning hints
– Structural: Hints about matrix
– Workload: Hints about frequency of calls, to limit tuning time

• May save/restore tuning results
– To apply on future runs with similar matrix
– Stored in “human-readable” format

Exploiting Problem-Specific Structure

• Optimizations for SpMV
– Register blocking (up to 4x over CSR)
– Variable block splitting (2.1x over CSR, 1.8x over RB)
– Diagonals (2x over CSR)
– Reordering to create dense structure + splitting (2x over CSR)
– Symmetry (2.8x over CSR, 2.6x over RB)
– Cache blocking (2.2x over CSR)
– Multiple vectors (7x over CSR)
– And combinations…

• Sparse triangular solve
– Hybrid sparse/dense data structure (1.8x over CSR)

• Higher-level kernels
– AAT⋅x, ATA⋅x (4x over CSR, 1.8x over RB)
– A2⋅x (2x over CSR, 1.5x over RB)

Example: Variable Block Structure

2.1x
over CSR

1.8x
over RB

Example: Row-Segmented Diagonals

2x
over CSR

Mixed Diagonal and Block Structure

Example: Sparse Triangular Factor

• Raefsky4 (structural
problem) + SuperLU +
colmmd

• N=19779, nnz=12.6 M

Dense trailing triangle:
dim=2268, 20% of total
nz

Can be as high as 90+%!
1.8x over CSR

Example applications

• T3P – Accelerator Design – Ko
– Register blocking, Symmetric Storage, Multiple vector
– 1.68x faster on Itanium 2 for one vector
– 4.4x faster for 8 vectors

• Omega3P – Accelerator Design – Ko
– Register blocking, Symmetric storage, Reordering
– 2.1x faster on Power4

• Semiconductor Industry:
– 1.9x speedup over SPOOLES in CG at design firm

• Recent integration of OSKI into PETSc

Status and Future Work

• OSKI Release 1.0 and docs available
bebop.cs.berkeley.edu/oski

• Performance bounds modeling (ongoing)
• Future OSKI work

– Release of PETSc version with OSKI
– Better “low-level” tuning, including vectors
– Automatically tuned parallel sparse kernels

• Development of a new HPC Challenge Benchmark
– Evaluate platforms based on tuned (blocked) SpMV

performance
• Tuning higher level algorithms using Akx

– Models indicate large speedups possible

