
10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 1

A Comparison of
Cache-conscious and

Cache-oblivious Codes
Tom Roeder, Cornell University

Kamen Yotov, IBM T. J. Watson (presenter)
Keshav Pingali, Cornell University

Joint work with Fred Gustavson and John Gunnels (IBM T. J. Watson)

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 2

Motivation
• Current compilers do not generate good code even for BLAS

– Conjecture: code generation requires parameters like tile sizes and loop unroll
factors whose optimal values are difficult to determine using analytical models

• Previous work on ATLAS
– Actually, compiler models are quite adequate to produce optimized iterative

cache-conscious MMM (Yotov et al. 2005)
– So what is going on inside compilers?

• Hard to know because compilers like XLF are not in public domain
• Goal

– Build a domain-specific compiler (BRILA) for dense linear algebra programs
– Input

• High-level block-recursive algorithms
• Key data structure is matrix, not array

– Output
• Code optimized for memory hierarchy

• Question:
– What should output look like?

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 3

Two Possible Answers
• Cache-oblivious (CO) approach

– Execute recursive algorithm directly
• Not aware of memory hierarchy: approximate blocking
• I/O optimal

– Used in FFT implementations, e.g. FFTW
• Little data reuse

• Cache-conscious (CC) approach:
– Execute carefully blocked iterative algorithm

• Code (and data structures) have parameters that depend on memory hierarchy
– Used in dense linear algebra domain, e.g. BLAS, LAPACK

• Lots of data reuse
• Questions

– How does performance of CO approach compare with that of CC approach for
algorithms with a lot of reuse such as dense LA?

– More generally, under what assumptions about hardware and algorithms does
CO approach perform well?

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 4

Organization of Talk
• Non-standard view of blocking

– Reduce bandwidth required from memory
• CO and CC approaches to blocking

– Control structures
– Data structures

• Experimental results
– UltraSPARC IIIi
– Itanium
– Xeon
– Power 5

• Lessons and ongoing work

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 5

Blocking
• Microscopic view

– Blocking reduces latency of a memory access
• Macroscopic view

– Memory hierarchy can be ignored if
• memory has enough bandwidth to feed processor
• data can be pre-fetched to hide memory latency

– Blocking reduces bandwidth needed from memory
• Useful to consider macroscopic view in more

detail

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 6

Example: MMM on Itanium 2
• Processor features

– 2 FMAs per cycle
– 126 effective FP registers

• Basic MMM
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)

for (int k = 0; k < N; k++)
C[i, j] += A[i, k] * B[k, j];

• Execution requirements
– N3 multiply-adds

• Ideal execution time = N3 / 2 cycles
– 3 N3 loads + N3 stores = 4 N3 memory operations

• Bandwidth requirements
– 4 N3 / (N3 / 2) = 8 doubles / cycle

• Memory cannot sustain this bandwidth but register file can

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 7

Reduce Bandwidth by Blocking

• Square blocks: NB x NB x NB
– working set must fit in cache
– size depends on schedule, maximum is 3 NB2

• Data touched (doubles)
– Block: 4 NB2

– Total: (N / NB)3 * 4 NB2 = 4 N3 / NB
• Ideal execution time (cycles)

– N3 / 2
• Required bandwidth from memory (doubles per cycle)

– (4 N3 / NB) / (N3 / 2) = 8 / NB
• General picture for multi-level memory hierarchy

– Bandwidth required from level L+1 = 8 / NBL
• Constraints

– Lower bound: 8 / NBL ≤ Bandwidth between L and L+1
– Upper bound: Working set of block computation ≤ Capacity(L)

CPU Cache Memory

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 8

Example: MMM on Itanium 2

* Bandwidth in doubles per cycle; Limit 4 accesses per cycle between registers and L2

• Between Register File and L2
– Constraints

• 8 / NBR ≤ 4
• 3 * NBR

2 ≤ 126
– Therefore Bandwidth(R,L2) is enough for 2 ≤ NBR ≤ 6

• NBR = 2 required 8 / NBR = 4 doubles per cycle from L2
• NBR = 6 required 8 / NBR = 1.33 doubles per cycle from L2
• NBR > 6 possible with better scheduling

FPU Registers L2 L3 MemoryL1

4*

≥2

2*

4
4

≥6
≈0.5

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 9

Example: MMM on Itanium 2

* Bandwidth in doubles per cycle; Limit 4 accesses per cycle between registers and L2

• Between L2 and L3
– Sufficient bandwidth without blocking at L2

d

FPU Registers L2 L3 MemoryL1

4*

≥2

2*

4
4

≥6
≈0.5

2 ≤ NBR ≤ 6
1.33 ≤ B(R,L2) ≤ 4

2 ≤ NBL2 ≤ 6
1.33 ≤ B(R,L2) ≤ 4

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 10

Example: MMM on Itanium 2

* Bandwidth in doubles per cycle; Limit 4 accesses per cycle between registers and L2

• Between L3 and Memory
– Constraints

• 8 / NBL3 ≤ 0.5
• 3 * NBL3

2 ≤ 524288 (4MB)
– Therefore Bandwidth(L3,Memory) is enough for 16 ≤ NBL3 ≤ 418

• NBL3 = 16 required 8 / NBL3 = 0.5 doubles per cycle from Memory
• NBL3 = 418 required 8 / NBR ≈ 0.02 doubles per cycle from Memory
• NBL3 > 418 possible with better scheduling

FPU Registers L2 L3 MemoryL1

4*

≥2

2*

4
4

≥6
≈0.5

2 ≤ NBR ≤ 6
1.33 ≤ B(R,L2) ≤ 4

2 ≤ NBL2 ≤ 6
1.33 ≤ B(L2,L3) ≤ 4

16 ≤ NBL3 ≤ 418
0.02 ≤ B(L3,Memory) ≤ 0.5

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 11

Lessons
• Blocking

– Useful to reduce bandwidth requirements
• Block size

– Does not have to be exact
– Enough to lie within an interval
– Interval depends on hardware parameters
– Approximate blocking may be OK

• Latency
– Use pre-fetching to reduce expected latency

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 12

Organization of Talk
• Non-standard view of blocking

– Reduce bandwidth required from memory
• CO and CC approaches to blocking

– Control structures
– Data structures

• Experimental results
– UltraSPARC IIIi
– Itanium
– Xeon
– Power 5

• Lessons and ongoing work

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 13

Implementation of Blocking
• Control structure

– What are the block computations?
– In what order are they performed?
– How is this order generated?

• Data structure
– Non-standard storage orders to match control

structure

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 14

Cache-Oblivious Algorithms

C00 = A00*B00 + A01*B10
C01 = A01*B11 + A00*B01
C11 = A11*B01 + A10*B01
C10 = A10*B00 + A11*B10

• Divide all dimensions (AD)
• 8-way recursive tree down to 1x1 blocks

– Gray-code order promotes reuse
• Bilardi, et al.

A00 A01

A11A10

C00 C01

C11C10

B00 B01

B11B10

A0

A1

C0

C1

B

C0 = A0*B
C1 = A1*B

C11 = A11*B01 + A10*B01
C10 = A10*B00 + A11*B10

• Divide largest dimension (LD)
• Two-way recursive tree down to 1x1 blocks

• Frigo, Leiserson, et al.

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 15

Cache-Oblivious: Discussion
• Block sizes

– Generated dynamically at
each level in the recursive call
tree

• Our experience
– Performance is similar
– Use AD for the rest of the talk

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 16

Cache-Conscious Algorithms
• Usually Iterative

– Nested loops
• Implementation of blocking

– Cache blocking achieved by Loop Tiling
– Register blocking also requires Loop Unrolling

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 17

Structure of CC Code

B

N

A C

NB

K

B

NB

N
B

A C

K
M

U

NU

K

Cache Blocking Register Blocking

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 18

Data Structures

• Fit control structure better
• Improve

– Spatial locality
– Streaming

Row-major Row-Block-Row Morton-Z

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 19

Data Structures: Discussion
• Morton-Z

– Matches recursive control structure
better than RBR

– Suggests better performance for CO
– More complicated to implement
– In our experience payoff is small or

even negative
• Use RBR for the rest of the talk

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 20

Organization of Talk
• Non-standard view of blocking

– Reduce bandwidth required from memory
• CO and CC approaches to blocking

– Control structures
– Data structures

• Experimental results
– UltraSPARC IIIi
– Itanium
– Xeon
– Power 5

• Lessons and ongoing work

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 21

UltraSPARC IIIi
• Peak performance

– 2 GFlops
• Memory hierarchy

– Registers: 32
– L1 data cache: 64KB, 4-way
– L2 data cache: 1MB, 4-way

• Compilers
– FORTRAN: SUN F95 7.1
– C: SUN C 5.5

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 22

Control Structures
• Iterative: triply nested loop
• Recursive: down to 1 x 1 x 1

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 23

Control Structures
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None
/

Compiler

• Recursion down to NB
– Unfold completely below NB

to get a basic block
• Micro-Kernel:

– The basic block compiled
with native compiler

• Best performance for NB =12
• Compiler unable to use

registers
• Unfolding reduces control

overhead
– limited by I-cache

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 24

Control Structures
• Recursion down to NB

– Unfold completely below
NB to get a basic block

• Micro-Kernel
– Scalarize all array

references in the basic
block

– Compile with native
compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None
/

Compiler

Scalarized
/

Compiler

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 25

Control Structures
• Recursion down to NB

– Unfold completely below
NB to get a basic block

• Micro-Kernel
– Perform Belady’s register

allocation on the basic
block

– Schedule using BRILA
compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 26

Control Structures
• Recursion down to NB

– Unfold completely below
NB to get a basic block

• Micro-Kernel
– Construct a preliminary

schedule
– Perform Graph Coloring

register allocation
– Schedule using BRILA

compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 27

Control Structures
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive Iterative

Micro-Kernel

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA

• Recursion down to MU x
NU x KU

• Micro-Kernel
– Completely unroll MU x

NU x KU triply nested loop
– Construct a preliminary

schedule
– Perform Graph Coloring

register allocation
– Schedule using BRILA

compiler

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 28

Control Structures
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive Iterative

Mini-Kernel

Micro-Kernel

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA

• Recursion down to NB
• Mini-Kernel

– NB x NB x NB triply
nested loop

– Tiling for L1 cache
– Body is Micro-Kernel

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 29

Control Structures
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive Iterative

Mini-Kernel

Micro-Kernel ATLAS CGw/S
ATLAS Unleashed

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 30

Control Structures
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive Iterative

Mini-Kernel

Micro-Kernel ATLAS CGw/S
ATLAS Unleashed

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 31

UltraSPARC IIIi Complete

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 32

Some Observations
• Iterative has been proven to work well in practice

– Vendor BLAS, ATLAS, etc.
– But requires a lot of work to produce code and tune parameters

• Implementing a high-performance CO code is not easy
– Careful attention to micro-kernel and mini-kernel is needed

• Recursive suffers overhead on several fronts
– Recursive Micro-Kernels yield less performance than iterative ones using same

scheduling techniques
– Recursive Micro-Kernels have large code size, which sometimes impacts instruction

cache performance
– Obtaining high-performance from recursive outer structure requires large kernels at the

leaves to reduce recursive overhead
– Using fully recursive approach with highly optimized micro-kernel, we never got more

than 2/3 of peak.
– We are just starting analyze the numbers

• Automating code generation:
– Pre-fetching in iterative codes can be automated
– Not obvious how to do it for CO codes

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 33

Ongoing Work
• Explain performance of all results shown
• Complete ongoing Matrix Transpose study
• I/O optimality

– Interesting theoretical results for simple model of
computation

– What additional aspects of hardware/program
need to be modeled for it to be useful in practice?

• Compiler-generated iterative multi-level
blocking for dense linear algebra programs
– BRILA Compiler

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 34

Itanium 2 (In)Complete

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 35

Xeon (In)Complete

10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 36

Power 5 (In)Complete
• In the works…

	A Comparison of �Cache-conscious and �Cache-oblivious Codes
	Motivation
	Two Possible Answers
	Organization of Talk
	Blocking
	Example: MMM on Itanium 2
	Reduce Bandwidth by Blocking
	Example: MMM on Itanium 2
	Example: MMM on Itanium 2
	Example: MMM on Itanium 2
	Lessons
	Organization of Talk
	Implementation of Blocking
	Cache-Oblivious Algorithms
	Cache-Oblivious: Discussion
	Cache-Conscious Algorithms
	Structure of CC Code
	Data Structures
	Data Structures: Discussion
	Organization of Talk
	UltraSPARC IIIi
	Control Structures
	Control Structures
	Control Structures
	Control Structures
	Control Structures
	Control Structures
	Control Structures
	Control Structures
	Control Structures
	UltraSPARC IIIi Complete
	Some Observations
	Ongoing Work
	Itanium 2 (In)Complete
	Xeon (In)Complete
	Power 5 (In)Complete

