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Motivation
• Current compilers do not generate good code even for BLAS

– Conjecture: code generation requires parameters like tile sizes and loop unroll 
factors whose optimal values are difficult to determine using analytical models

• Previous work on ATLAS 
– Actually, compiler models are quite adequate to produce optimized iterative 

cache-conscious MMM (Yotov et al. 2005)
– So what is going on inside compilers?

• Hard to know because compilers like XLF are not in public domain
• Goal

– Build a domain-specific compiler (BRILA) for dense linear algebra programs
– Input 

• High-level block-recursive algorithms
• Key data structure is matrix, not array

– Output
• Code optimized for memory hierarchy

• Question: 
– What should output look like?
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Two Possible Answers
• Cache-oblivious (CO) approach

– Execute recursive algorithm directly
• Not aware of memory hierarchy: approximate blocking
• I/O optimal

– Used in FFT implementations, e.g. FFTW 
• Little data reuse

• Cache-conscious (CC) approach:
– Execute carefully blocked iterative algorithm

• Code (and data structures) have parameters that depend on memory hierarchy
– Used in dense linear algebra domain, e.g. BLAS, LAPACK

• Lots of data reuse
• Questions

– How does performance of CO approach compare with that of CC approach for 
algorithms with a lot of reuse such as dense LA?

– More generally, under what assumptions about hardware and algorithms does 
CO approach perform well?
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Organization of Talk
• Non-standard view of blocking

– Reduce bandwidth required from memory
• CO and CC approaches to blocking

– Control structures
– Data structures

• Experimental results
– UltraSPARC IIIi
– Itanium
– Xeon
– Power 5

• Lessons and ongoing work
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Blocking
• Microscopic view

– Blocking reduces latency of a memory access 
• Macroscopic view

– Memory hierarchy can be ignored if
• memory has enough bandwidth to feed processor
• data can be pre-fetched to hide memory latency

– Blocking reduces bandwidth needed from memory 
• Useful to consider macroscopic view in more 

detail
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Example: MMM on Itanium 2
• Processor features

– 2 FMAs per cycle
– 126 effective FP registers

• Basic MMM
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)

for (int k = 0; k < N; k++)
C[i, j] += A[i, k] * B[k, j];

• Execution requirements
– N3 multiply-adds

• Ideal execution time = N3 / 2 cycles
– 3 N3 loads + N3 stores = 4 N3 memory operations

• Bandwidth requirements
– 4 N3 / (N3 / 2) = 8 doubles / cycle

• Memory cannot sustain this bandwidth but register file can
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Reduce Bandwidth by Blocking

• Square blocks: NB x NB x NB
– working set must fit in cache
– size depends on schedule, maximum is 3 NB2

• Data touched (doubles)
– Block: 4 NB2

– Total: (N / NB)3 * 4 NB2 = 4 N3 / NB
• Ideal execution time (cycles)

– N3 / 2
• Required bandwidth from memory (doubles per cycle)

– (4 N3 / NB) / (N3 / 2) = 8 / NB
• General picture for multi-level memory hierarchy

– Bandwidth required from level L+1 = 8 / NBL
• Constraints

– Lower bound: 8 / NBL ≤ Bandwidth between L and L+1
– Upper bound: Working set of block computation ≤ Capacity(L)

CPU Cache Memory
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Example: MMM on Itanium 2

* Bandwidth in doubles per cycle; Limit 4 accesses per cycle between registers and L2

• Between Register File and L2
– Constraints

• 8 / NBR ≤ 4
• 3 * NBR

2 ≤ 126
– Therefore Bandwidth(R,L2) is enough for 2 ≤ NBR ≤ 6

• NBR = 2 required 8 / NBR = 4 doubles per cycle from L2
• NBR = 6 required 8 / NBR = 1.33 doubles per cycle from L2
• NBR > 6 possible with better scheduling

FPU Registers L2 L3 MemoryL1

4*

≥2

2*

4
4

≥6
≈0.5
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Example: MMM on Itanium 2

* Bandwidth in doubles per cycle; Limit 4 accesses per cycle between registers and L2

• Between L2 and L3
– Sufficient bandwidth without blocking at L2

d

FPU Registers L2 L3 MemoryL1

4*

≥2

2*

4
4

≥6
≈0.5

2 ≤ NBR ≤ 6
1.33 ≤ B(R,L2) ≤ 4

2 ≤ NBL2 ≤ 6
1.33 ≤ B(R,L2) ≤ 4
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Example: MMM on Itanium 2

* Bandwidth in doubles per cycle; Limit 4 accesses per cycle between registers and L2

• Between L3 and Memory
– Constraints

• 8 / NBL3 ≤ 0.5
• 3 * NBL3

2 ≤ 524288 (4MB)
– Therefore Bandwidth(L3,Memory) is enough for 16 ≤ NBL3 ≤ 418

• NBL3 = 16 required 8 / NBL3 = 0.5 doubles per cycle from Memory
• NBL3 = 418 required 8 / NBR ≈ 0.02 doubles per cycle from Memory
• NBL3 > 418 possible with better scheduling

FPU Registers L2 L3 MemoryL1

4*

≥2

2*

4
4

≥6
≈0.5

2 ≤ NBR ≤ 6
1.33 ≤ B(R,L2) ≤ 4

2 ≤ NBL2 ≤ 6
1.33 ≤ B(L2,L3) ≤ 4

16 ≤ NBL3 ≤ 418
0.02 ≤ B(L3,Memory) ≤ 0.5
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Lessons
• Blocking

– Useful to reduce bandwidth requirements
• Block size 

– Does not have to be exact
– Enough to lie within an interval
– Interval depends on hardware parameters
– Approximate blocking may be OK

• Latency
– Use pre-fetching to reduce expected latency
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Organization of Talk
• Non-standard view of blocking

– Reduce bandwidth required from memory
• CO and CC approaches to blocking

– Control structures
– Data structures

• Experimental results
– UltraSPARC IIIi
– Itanium
– Xeon
– Power 5

• Lessons and ongoing work



10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 13

Implementation of Blocking
• Control structure

– What are the block computations?
– In what order are they performed?
– How is this order generated?

• Data structure
– Non-standard storage orders to match control 

structure
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Cache-Oblivious Algorithms

C00 = A00*B00 + A01*B10
C01 = A01*B11 + A00*B01
C11 = A11*B01 + A10*B01
C10 = A10*B00 + A11*B10

• Divide all dimensions (AD) 
• 8-way recursive tree down to 1x1 blocks

– Gray-code order promotes reuse
• Bilardi, et al. 

A00 A01

A11A10

C00 C01

C11C10

B00 B01

B11B10

A0

A1

C0

C1

B

C0 = A0*B
C1 = A1*B

C11 = A11*B01 + A10*B01
C10 = A10*B00 + A11*B10

• Divide largest dimension (LD) 
• Two-way recursive tree down to 1x1 blocks

• Frigo, Leiserson, et al. 
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Cache-Oblivious: Discussion
• Block sizes 

– Generated dynamically at 
each level in the recursive call 
tree

• Our experience
– Performance is similar
– Use AD for the rest of the talk
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Cache-Conscious Algorithms
• Usually Iterative

– Nested loops
• Implementation of blocking

– Cache blocking achieved by Loop Tiling
– Register blocking also requires Loop Unrolling
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Structure of CC Code

B

N

A C

NB

K

B

NB

N
B

A C

K
M

U

NU

K

Cache Blocking                    Register Blocking
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Data Structures

• Fit control structure better
• Improve

– Spatial locality
– Streaming

Row-major Row-Block-Row Morton-Z
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Data Structures: Discussion
• Morton-Z

– Matches recursive control structure 
better than RBR

– Suggests better performance for CO
– More complicated to implement
– In our experience payoff is small or 

even negative
• Use RBR for the rest of the talk
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Organization of Talk
• Non-standard view of blocking

– Reduce bandwidth required from memory
• CO and CC approaches to blocking

– Control structures
– Data structures

• Experimental results
– UltraSPARC IIIi
– Itanium
– Xeon
– Power 5

• Lessons and ongoing work
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UltraSPARC IIIi
• Peak performance

– 2 GFlops
• Memory hierarchy

– Registers: 32
– L1 data cache: 64KB, 4-way
– L2 data cache: 1MB, 4-way

• Compilers
– FORTRAN: SUN F95 7.1
– C: SUN C 5.5
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Control Structures
• Iterative: triply nested loop
• Recursive: down to 1 x 1 x 1

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement
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Control Structures
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None
/

Compiler

• Recursion down to NB
– Unfold completely below NB 

to get a basic block
• Micro-Kernel:

– The basic block compiled 
with native compiler

• Best performance for NB =12
• Compiler unable to use 

registers
• Unfolding reduces control 

overhead
– limited by I-cache
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Control Structures
• Recursion down to NB

– Unfold completely below 
NB to get a basic block

• Micro-Kernel
– Scalarize all array 

references in the basic 
block

– Compile with native 
compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None
/

Compiler

Scalarized
/

Compiler
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Control Structures
• Recursion down to NB

– Unfold completely below 
NB to get a basic block

• Micro-Kernel
– Perform Belady’s register 

allocation on the basic 
block

– Schedule using BRILA 
compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA
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Control Structures
• Recursion down to NB

– Unfold completely below 
NB to get a basic block

• Micro-Kernel
– Construct a preliminary 

schedule
– Perform Graph Coloring 

register allocation
– Schedule using BRILA 

compiler

Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive

Micro-Kernel

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA
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Control Structures
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive Iterative

Micro-Kernel

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA

• Recursion down to MU x 
NU x KU

• Micro-Kernel
– Completely unroll MU x 

NU x KU triply nested loop
– Construct a preliminary 

schedule
– Perform Graph Coloring 

register allocation
– Schedule using BRILA 

compiler
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Control Structures
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive Iterative

Mini-Kernel

Micro-Kernel

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA

• Recursion down to NB
• Mini-Kernel

– NB x NB x NB triply 
nested loop

– Tiling for L1 cache
– Body is Micro-Kernel
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Control Structures
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive Iterative

Mini-Kernel

Micro-Kernel ATLAS CGw/S
ATLAS Unleashed

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA
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Control Structures
Outer Control Structure

Iterative Recursive

Inner Control Structure

Statement Recursive Iterative

Mini-Kernel

Micro-Kernel ATLAS CGw/S
ATLAS Unleashed

None
/

Compiler

Scalarized
/

Compiler

Belady
/

BRILA

Coloring
/

BRILA



10/11/2005 Automatic Tuning of Whole Applications (LACSI'05) 31

UltraSPARC IIIi Complete
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Some Observations
• Iterative has been proven to work well in practice

– Vendor BLAS, ATLAS, etc.
– But requires a lot of work to produce code and tune parameters

• Implementing a high-performance CO code is not easy
– Careful attention to micro-kernel and mini-kernel is needed

• Recursive suffers overhead on several fronts
– Recursive Micro-Kernels yield less performance than iterative ones using same 

scheduling techniques
– Recursive Micro-Kernels have large code size, which sometimes impacts instruction 

cache performance
– Obtaining high-performance from recursive outer structure requires large kernels at the 

leaves to reduce recursive overhead
– Using fully recursive approach with highly optimized micro-kernel, we never got more 

than 2/3 of peak.
– We are just starting analyze the numbers

• Automating code generation:
– Pre-fetching in iterative codes can be automated
– Not obvious how to do it for CO codes
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Ongoing Work
• Explain performance of all results shown
• Complete ongoing Matrix Transpose study
• I/O optimality

– Interesting theoretical results for simple model of 
computation

– What additional aspects of hardware/program 
need to be modeled for it to be useful in practice?

• Compiler-generated iterative multi-level 
blocking for dense linear algebra programs
– BRILA Compiler
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Itanium 2 (In)Complete
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Xeon (In)Complete
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Power 5 (In)Complete
• In the works…
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