
Hardware Accelerated Apriori Algorithm for Data Mining

Zachary K. Baker and Viktor K. Prasanna
University of Southern California, Los Angeles, CA, USA

zbaker@halcyon.usc.edu, prasanna@ganges.usc.edu

Abstract
The Apriori algorithm is a popular correlation-based datamining
kernel. However, it is a computationally expensive algorithm and
the running times can stretch up to days for large databases, as
database sizes can extend to Gigabytes.

Through the use of a new extension to the systolic array archi-
tecture, time required for processing can be significantly reduced.
Our array architecture implementation on a Xilinx Virtex-II Pro 100
provides a performance improvement that can be orders of magni-
tude faster than the state-of-the-art software implementations. The
system is easily scalable and introduces an efficient “systolic in-
jection” method for intelligently reporting unpredictably generated
mid-array results to a controller without any chance of collision or
excessive stalling.

1 Introduction
Data mining is a rapidly advancing field of strategies for finding
connections between elements in large databases. The Apriori algo-
rithm is a popular and foundational member of the correlation-based
data mining kernels used today. However, it is a computationally
expensive algorithm and running times can stretch to days for large
databases, as database sizes can reach from Gigabytes and compu-
tation requires multiple passes.

The Apriori algorithm operates by progressively building fre-
quent sets over multiple generations. Each generation is composed
of three sections: the candidate generation, candidate pruning, and
candidate support steps. Each generation provides a set of candi-
dates that is expanded in the next generation. The support informa-
tion is fed back into the candidate generator and the cycle continues
until the final candidate set is determined.

Candidate generation is the process in which one generation of
candidates are built into the next generation. This operation is as
follows:

∀ f1, f2 ∈ Fk do
with f1 = (i1, ..., ik−1, ik) and f2 = (i1, ..., ik−1, i

∗

k)
and ik < i∗k

f := f1 ∪ f2 = (i1, ..., ik−1, ik, i∗k)

Another phase of the algorithm is the support calculation. It is
by far the most time consuming and data intensive part of the hard-
ware implementation, as it requires the database to be streamed into
the system. Each potential candidate’s support, or number of oc-
currences over the database set, is determined by comparing each
candidate with each transaction in the database. If the items in a
candidate are a subset of the transaction, the support count for that
candidate is incremented, as follows:

∀t ∈ T do
∀c ∈ C do

if (c ∈ t) then support(c)++

The main problem with the Apriori algorithm is this data com-
plexity. Each candidate must be compared against every transaction

data, and candidate generation must see the entire database trans-
action set. This gives a large running time for a single generation,
O(|T ||C||t|), assuming the subset function can be implemented in
constant time |t|. However, the parallelism contained in the loops
allows for some interesting acceleration in hardware, particularly
when implemented as a systolic array.

1.1 Our Contributions
The architecture we have designed utilizes a systolic architecture to
allow for the uni-directional streaming of candidate and transaction
data through the hardware accelerator device. Due to our streaming
implementation, the candidate generation phase of the algorithm re-
quire orders of magnitude less time than the support calculation, and
overall requires roughly 25% of the time required by the fastest non-
supercomputer implementations of Bodon, Borgelt, and Goethals.
The off-chip memory required is negligible beyond the size of the
database and the bandwidth between memory and the systolic array
is only 250MB/s.

While the architecture could easily be implemented in a custom
ASIC – in fact, the simple units that make up the systolic array are
designed explicitly for ease of ASIC implementation – the use of
FPGA allows the user to utilize parameterized designs which allow
for variable size item descriptors as well as optimized memory sizes
for a particular problem. As well, FPGAs allow the design to be
scaled upward easily as process technology allows for ever-larger
gate counts.

The candidate generation phases are based on the availability of
a method to inject results into the datastream. Injection is important
in this sort of application because any or all of the items in the array
can produce data at any time over consecutive cycles. Unfortunately,
this is not as simple as inserting some sort of “shadow” register to
provide a delay given a downstream stall, although this is part of the
solution. Without some method of controlling the data, this could
result in a tangle of data collisions. Consider the candidate genera-
tion phase; (|Cm|)2 comparisons are made, and were each of the ca

units to produce a result (a worst case that is not actually possible)
and attempt to forward it in some way, the final unit in the chain
would either have ca collisions, or we would have to find some way
to buffer out ca elements within the units. Candidate generation
and pruning is an unpredictable, entirely data-controlled operation.
However, we can stall the pipeline and cause the pipeline itself to
act as an efficient buffer. This is possible in data mining whereas it
is less attractive in applications such as string matching because we
have some flexibility as to when data is sent into the array.

As the support calculation takes an order of magnitude more time
than any other of the functional segments in our implementation, it is
a good approximation of the overall system performance. With one
large FPGA device we can beat the much faster clocked dual device
Xeon machine by at least 4x, and often by far greater margins.

1Supported by the United States National Science Foundation under
award No. ACI-0325409 and in part by an equipment grant from the Xil-
inx and HP Corporations.

1

