A Hardware-Accelerated Steady State
Power-Flow Solver

Daniel Chavarria-Miranda David Chassin
Applied Computer Science Energy Technology Development

Pacific Northwest National Laboratory (PNNL)
-

Introduction

<
e The power-flow problem is a fundamental calculation in
power systems

— It determines the voltage magnitude and phase angle at each bus i
power grid under steady state conditions

e The preferred strategy for computing a solution is to use a
Newton-Raphson iterative scheme

— Advantage: quadratic convergence

- Disadvantages:

e problems handling “flat-start” initial conditions (zero angle, one-per-un
magnitude)

e requires computing a Jacobian on every iteration (global computation)

Introduction (cont.)

<
e Another options is to use a Gauss-Seidel iterative scheme

- Advantages:

e no problem handling “flat-start” conditions

e computation for each bus in the grid requires only “local” information

-~ Makes it easily parallelizable

- Disadvantage: slower convergence rate

e (Gauss-Seidel iterative formulation:

k

P+ O _ E v Yo
Ykak Ykk

n=1ln=k

- where V, is the complex voltage for bus k, P, is the real power at b
k, Q, is the reactive power at bus k and Y, is the admittance value
between buses k and n.

Outline
]

= Design & Implementation of a Gauss-Seidel Solver
- Platform
— Algorithms & Data Structures
— Operators

-~ Computational Structure
e Preliminary Results

e Conclusions & Future Work

Platform

<
e SGI RASC system:

SGI Altix 350 + Virtex 11 6000 FPGA
FPGA board is connected to the high-speed NUMAIink fabric

Accessible to all the Itanium 2 General Purpose Processors (GPP) o
the system, however the FPGA board cannot access system memor

SGI provides a software API

2MB
QDR SRAM

Addr & Ctrl

to access the FPGA board’s NUMAlink 12.8 GB/s
: SSP 6.4 GB/s Adet & Ct
memory and registers QDR SRAM 9.6 GBIs " : .
3reads @ 1.6 GBIs aue Algorithm &
SGl provides prebuilt cores to S leGRs ’

control 3 2MB banks of Sty
SRAM and to interface with —

the system ! PCi G8MHz

NI M Alink CAannactnrs

Algorithms & Data Structures
e

2 O S

e Prototype solves a 5-bus system with 1 swing bus (A), 1
voltage-controlled bus (C), and 3 regular (load) buses (B, D.

Swing bus is a reference bus with magnitude = 1.0 and phase angl
0.0

Voltage-controlled bus: voltage magnitude is fixed, phase angle cal
vary

Regular (load) buses: voltage magnitude and angle can vary

Algorithms & Data Structures (cont.)

<&
e Compile-time inputs to the prototype are:

- Real and reactive power
- Reactive power limits
— Admittance matrix

— Initial complex voltages for each bus

e |n general, the admittance matrix (Y) has a sparse structure
that corresponds to the grid topology

- However, for simplifying the implementation we have used a dense
representation (at the cost of some extra storage)

Operators

e \We have implemented our protoype using Celoxica's Hand
C

- Provides a fixed-point operator library (+, -, *, /, <, >, etc.)

e All data elements are represented as signed 32-bit fixed-pc
quantities (16:16)

— Complex numbers use two 32-bit quantities for their real and
Imaginary parts

e Built a library of complex number operators based on fixed-
point primitives

e Also built our own fixed-point division operator because
Handel-C’s operator did not satisfy timing requirements

- It was trying to do 32-bit fixed-point division in a single clock cycle

Operators (cont.)
e

e Division operator is based on a Newton-Raphson iterative
scheme

— First, compute the reciprocal of the divisor, then multiply by the
dividend

— Initial approximation of the reciprocal is done by finding the positior
the most significant 1 in the binary representation of the divisor anc

“complementing” the position
0000010111011.. 0000..00001000

— This fraction is an upper
bound for the reciprocal of N\ | |
the divisor ooston a7) | 1'at postion 4 3. 27 1

Operators (cont.)
e

e \We also implemented a CORDIC library to compute sines
and cosines

— used in conversions between rectangular and polar complex numb
representations

e Extended the idea behind CORDIC to compute exponential
as well

A

Y

Y1

Computational Structure

e The implementation uses an iterative flow inside the FPGA
— Initial values are loaded from precomputed ROM tables

- In each iteration, the voltages for the regular (load) buses are
computed in parallel with respect to the voltage-controlled bus

Parallel Execution

A

Regular 1
<
)
D
@]
‘.g Reaular 2 > Iteration
eqgular
3 step
S
)
o

Regular 3

Computational Structure (cont.)
e

e Computation for a regular bus:

Parallel Execution

A
— —~

Mult. & Add Mult. & Add \
Buses < me Buses > me

Regular 1 Divide by complex conjugate

> lteration

step
Subtract accumulators

Multiply to compute new voltage

Computational Structure (cont.)
e

e Computation for a voltage-controlled bus:

Parallel Execution

pajjoJiuo)-abeyjon

Convert V, to Polar

Accumulate Angle Contributions

Compute Real Power

Mult. & Add Mult. & Add
Buses < me Buses > me

Divide by complex conjugate

| Subtract accumulators
| Multiply to compute new voltage

Exponentiate to compute
new voltage

|

Iteration
step

Outline
]

= Preliminary Results

e Conclusions & Future Work

Preliminary Results
o

Implementation Execution Time FPGA Speedup
Floating-point SW 368011 450
(simple) : '
Fixedl-point SW 265815 395
(simple)
Fixed-point HW
(@100 MHz) 818us 1.00
Floating-point SW
(optimized) 350us 0.46

e Software versions execute on a 1.5 GHz Itanium 2 process
of the Altix

e Fixed-point versions are accurate to one fractional digit

Analysis of Results

<
e One iteration of a regular bus takes 2.13us (@100 MHz)

- Fewer opportunities for optimization
e One iteration of a voltage-controlled bus takes 8.09us
-~ More opportunities for optimization
e Operators are not yet pipelined
- They are “staged” in Handel-C, behave like a software subroutine ¢

e Simplifying the computation may enable executing at
200MHz (halve the execution time)

Conclusions

e
e Pros:

— Prototype of a complex, non-linear solver for steady-state estimatio
e Complex arithmetic operators & transcendental functions
— Developed entirely in a higher-level hardware language (Handel-C)

-~ Reasonable performance for the clock frequency achieved (100 MF

e Cons:
- Performance is not yet competitive with software

— Complex computation hinders higher degrees of parallelism and
higher clock frequencies

e \/oltage-controlled path is quite complex

Future Work
e

e Need to scale the solver to realistic problem sizes (10,000
buses)

- Requires handling sparse representations for the constant admittan
data

- Higher overheads in software for sparse representations might give
an edge to the FPGA approach

e Need to improve performance
- Optimize computational paths (regular & voltage-controlled buses)
— Increase parallelism (more buses computed simultaneously)

-~ Optimize & pipeline operators to overlap computation of multiple bu

e Could help with achieving higher clock frequencies

