
A Hardware-Accelerated Steady State
Power-Flow Solver

Pacific Northwest National Laboratory (PNNL)

Daniel Chavarría-Miranda
Applied Computer Science

David Chassin
Energy Technology Development



Introduction

 The power-flow problem is a fundamental calculation in
power systems

– It determines the voltage magnitude and phase angle at each bus in a
power grid under steady state conditions

 The preferred strategy for computing a solution is to use a
Newton-Raphson iterative scheme

– Advantage: quadratic convergence

– Disadvantages:

 problems handling “flat-start” initial conditions (zero angle, one-per-unit
magnitude)

 requires computing a Jacobian on every iteration (global computation)



Introduction (cont.)

 Another options is to use a Gauss-Seidel iterative scheme
– Advantages:

 no problem handling “flat-start” conditions

 computation for each bus in the grid requires only “local” information

– Makes it easily parallelizable

– Disadvantage: slower convergence rate

 Gauss-Seidel iterative formulation:

– where Vk is the complex voltage for bus k, Pk is the real power at bus
k, Qk is the reactive power at bus k and Ykn is the admittance value
between buses k and n.
! 

Vk =
Pk + jQk

YkkVk

" Vn

Ykn

Ykkn=1,n#k

N

$



Outline

 Introduction

 Design & Implementation of a Gauss-Seidel Solver
– Platform

– Algorithms & Data Structures

– Operators

– Computational Structure

 Preliminary Results

 Conclusions & Future Work



Platform

 SGI RASC system:
– SGI Altix 350 + Virtex II 6000 FPGA

– FPGA board is connected to the high-speed NUMAlink fabric

– Accessible to all the Itanium 2 General Purpose Processors (GPP) on
the system, however the FPGA board cannot access system memory

– SGI provides a software API
to access the FPGA board’s
memory and registers

– SGI provides prebuilt cores to
control 3 2MB banks of
SRAM and to interface with
the system



Algorithms & Data Structures

 Prototype solves a 5-bus system with 1 swing bus (A), 1
voltage-controlled bus (C), and 3 regular (load) buses (B, D, E)

– Swing bus is a reference bus with magnitude = 1.0 and phase angle =
0.0

– Voltage-controlled bus: voltage magnitude is fixed, phase angle can
vary

– Regular (load) buses: voltage magnitude and angle can vary

A B C

ED



Algorithms & Data Structures (cont.)

 Compile-time inputs to the prototype are:
– Real and reactive power

– Reactive power limits

– Admittance matrix

– Initial complex voltages for each bus

 In general, the admittance matrix (Y) has a sparse structure
that corresponds to the grid topology

– However, for simplifying the implementation we have used a dense
representation (at the cost of some extra storage)



Operators

 We have implemented our protoype using Celoxica’s Handel-
C

– Provides a fixed-point operator library (+, -, *, /, <, >, etc.)

 All data elements are represented as signed 32-bit fixed-point
quantities (16:16)

– Complex numbers use two 32-bit quantities for their real and
imaginary parts

 Built a library of complex number operators based on fixed-
point primitives

 Also built our own fixed-point division operator because
Handel-C’s operator did not satisfy timing requirements

– It was trying to do 32-bit fixed-point division in a single clock cycle



Operators (cont.)

 Division operator is based on a Newton-Raphson iterative
scheme

– First, compute the reciprocal of the divisor, then multiply by the
dividend

– Initial approximation of the reciprocal is done by finding the position of
the most significant 1 in the binary representation of the divisor and
“complementing” the position

0000010111011…

Most signif icant 1
(position 27)

0000…00001000

Approximate Reciprocal
1 at position 4 = 32 - 27 - 1

– This fraction is an upper
bound for the reciprocal of
the divisor



Operators (cont.)

 We also implemented a CORDIC library to compute sines
and cosines

– used in conversions between rectangular and polar complex number
representations

 Extended the idea behind CORDIC to compute exponentials
as well

x1

y1

x2

y2

ϕ



Computational Structure

 The implementation uses an iterative flow inside the FPGA
– Initial values are loaded from precomputed ROM tables

– In each iteration, the voltages for the regular (load) buses are
computed in parallel with respect to the voltage-controlled bus

V
oltage-C

ontrolled

Regular 1

Regular 2

Regular 3

Iteration
step

Parallel Execution



Computational Structure (cont.)

 Computation for a regular bus:

Voltage-C
ontrolled

Regular 1

Regular 2

Regular 3

Iteratio
n step

Parallel Execution

Parallel Execution

Mult. & Add
Buses < me

Divide by complex conjugate

Iteration
step

Mult. & Add
Buses > me

Subtract accumulators

Multiply to compute new voltage



Computational Structure (cont.)

 Computation for a voltage-controlled bus:
Parallel Execution

Voltage-C
ontrolled

Regular 2

Regular 3

Iteratio
n step

Parallel Execution
Accumulate Angle Contributions

Iteration
step

Convert Vk to Polar

Compute Real Power

Exponentiate to compute
new voltage

Regular 1

Mult. & Add
Buses < me

Divide by complex conjugate

Mult. & Add
Buses > me

Subtract accumulators

Multiply to compute new voltage



Outline

 Introduction

 Design & Implementation of a Gauss-Seidel Solver
– Platform

– Algorithms & Data Structures

– Operators

– Computational Structure

 Preliminary Results

 Conclusions & Future Work



Preliminary Results

0.46380µsFloating-point SW
(optimized)

1.00818µsFixed-point HW
(@100 MHz)

3.252658µsFixed-point SW
(simple)

4.503680µsFloating-point SW
(simple)

FPGA SpeedupExecution TimeImplementation

 Software versions execute on a 1.5 GHz Itanium 2 processor
of the Altix

 Fixed-point versions are accurate to one fractional digit



Analysis of Results

 One iteration of a regular bus takes 2.13µs (@100 MHz)

– Fewer opportunities for optimization

 One iteration of a voltage-controlled bus takes 8.09µs

– More opportunities for optimization

 Operators are not yet pipelined
– They are “staged” in Handel-C, behave like a software subroutine call

 Simplifying the computation may enable executing at
200MHz (halve the execution time)



Conclusions

 Pros:
– Prototype of a complex, non-linear solver for steady-state estimation

 Complex arithmetic operators & transcendental functions

– Developed entirely in a higher-level hardware language (Handel-C)

– Reasonable performance for the clock frequency achieved (100 MHz)

 Cons:
– Performance is not yet competitive with software

– Complex computation hinders higher degrees of parallelism and
higher clock frequencies

 Voltage-controlled path is quite complex



Future Work

 Need to scale the solver to realistic problem sizes (10,000
buses)

– Requires handling sparse representations for the constant admittance
data

– Higher overheads in software for sparse representations might give
an edge to the FPGA approach

 Need to improve performance
– Optimize computational paths (regular & voltage-controlled buses)

– Increase parallelism (more buses computed simultaneously)

– Optimize & pipeline operators to overlap computation of multiple buses

 Could help with achieving higher clock frequencies


