
U N C L A S S I F I E D LA-UR-05-7995

U N C L A S S I F I ED LA-UR-05-7995

Algorithm Acceleration with
Reconfigurable Hardware

Maya Gokhale, maya@lanl.gov

2

Questions we will discuss

• What is reconfigurable hardware?

• How is reconfigurable hardware incorporated into high performance
systems?

• What applications or application classes can benefit from
reconfigurable hardware?

• How do you write code for reconfigurable hardware?

Much of this material is taken from the book:

Reconfigurable Computing: Accelerating Computation with Field-
Programmable Gate Arrays, by Gokhale, Maya B., Graham, Paul
S., ISBN: 0-387-26105-2

3

Reconfigurable Hardware: Example

Reconfigurable
Hardware allows
you to
customize the
computational
unit to the
problem.

4

It’s all about parallelism

• more activities at the same time => higher performance

5

Low Level Parallelism

• Co-processor parallelism
– Within a single instruction

stream
– Customized “instruction” is

performed by co-processor, eg.
Altivec, MMX, SSE, vector
instructions

– Integrated into the instruction
set of the processor

– Shares state with processor

• Instruction level parallelism
– VLIW: Multiple operations

bundled into a single instruction
– Superscalar: multiple

instructions in progress at the
same time

6

Low Level Parallelism: RCC View

• Build customized
instructions in
programmable hardware

• Flexibility
– Arbitrary number, kind of

operations
– Many alternative data

sources and sinks
– Interconnection network
– I/O bus to microprocessor
– Serial I/O, A/D
– Other FPGAs
– On-board memory
– On-chip memory

• Performance
– Customized pipelines

– Vector chaining
– Example

– 11 stage floating point
pipeline

7

High Level Parallelism

• Peer-to-peer
– Process level

– Separate address space for each process
– Communication among processes to

share state
– High latency messaging, eg. MPI

Buffered
Asynchronous

– Low latency streaming, eg. Streams-C
FIFO or Valid bit
Valid bit
Semi-synchronous

– Tightly synchronized streaming
Delays are pre-computed and built into

algorithm
– Thread level

– Shared address space for the threads
– Communication through shared memory

or messaging
– Signaling mechanisms

– Critical sections, mutual exclusion
– Barriers

• Client/Server
– Client can request service from server
– Client can request work from server

(taskbag)

8

Peer-to-Peer Parallelism: RCC View

• Peer-to-Peer
– hardware processes communicate with software processes
– MPI not generally available
– Most complete implementation is Streams-C/Impulse-C model

– Low latency, high bandwidth streaming model

9

Client-Server Parallelism: RCC View

• Client/Server
– FPGA performs

data/compute task as
requested by processor

– Data Acquisition
– FPGA collects high

bandwidth, real-time data
– FPGA performs first level

processing
– FPGA forwards to shared

memory and processors
over interconnection
network

10

FPGA Hardware

Overview of the architecture and building blocks of

Field Programmable Gate Arrays

11

What is an FPGA

•Function Units are
synthesized from
Logic/Memory Blocks.
•Function Units are
interconnected with
programmable routing
wires.
•Communication to
outside uses I/O blocks

12

A Closer Look

An FPGA slice
usually consists of
two flip-flops, two
LUTs and some
associated mux,
carry, and control
logic.

13

Routing and I/O

Programmable
Routing Fabric

Multi-Gb
Serial IO

IO Block

14

Putting FPGAs into systems

15

Generic Reconfigurable Computing System

•Field
Programmable
Gate Array (FPGA)
is the processor.
•Each processor
has dedicated (or
shared) memory
•Collections of
FPGA plus
external memory
form the computing
system.
•RC system
attaches to “host”
workstation via an
I/O bus.

16

Embedded Systems - Chameleon Board

The heart of the Chameleon VME board consists of four
Xilinx Virtex - E 1000 FPGAs, providing over four million
reconfigurable system gates that the user can apply to the
application. Connected to FPGAs A, B, and C are independent
synchronous SRAM blocks. Each bank is independent and can
be used to provide large circular buffers. The FPGAs on the
Chameleon VME link together in a ring with dedicated paths: A
to B, B to C, and A to C. All three FPGAs also link back to D.
These FPGA busses can be clocked at rates up to 133MHz.The
Chameleon VME has three high-speed I/O daughtercard sites
compatible with the industry's PCI Mezzanine Card (PMC)
standard. By enhancing PMC, the effort to tailor the Chameleon
VME to specific I/O requirements reduce to driver integration
instead of a full custom I/O daughtercard development task.On
the Chameleon VME board, FPGAs A, B, and C each have a
dedicated connection to an I/O daughtercard. For PMC-based
I/O applications, these links are separate 64-bit 66 MHz PCI
busses. CRI provides a 'ready-to-go' PCI core. The
daughtercard tied to FPGA C also contains additional
connectivity to the VME64x P2 user defined pins, allowing
connections to such back plane interfaces as RACE or Dual
RACE++.

17

FPGA Board in Software Radio

18

Stretch: Tensilica Processor + FGPA

• Configurable processor

• Closely integrated fabric interface

19

Reconfigurable Supercomputers:
microprocessor + FPGA on high BW network

Cray XD1 SRC MAP

StorageStorage
AreaArea

NetworkNetwork

LocalLocal
AreaArea

NetworkNetwork

WideWide
AreaArea

NetworkNetwork

DiskDisk

PCI-XPCI-XPCI-XPCI-X

MAPMAP
®®

MAPMAP
µµPP

MemoryMemory

SNAPSNAP
™™

µµPP
MemoryMemory

SNAPSNAP

Gig EthernetGig Ethernet

etc.etc.

CommonCommon
MemoryMemory

ChainingChaining
GPIOGPIO

CommonCommon
MemoryMemory

SRC Hi-Bar SwitchSRC Hi-Bar Switch

SGI RASC

(El-Raby MAPLD2005)

20

FPGA Arrays

Starbridge Systems
(Storaasli, 2003) BEE, BEE2

DINI Group
Logic Emulator

•Large collection of FPGAs
•High bandwidth connectivity among FPGAs
•Varying amounts of external memory
•Often used for emulation of large circuits

21

Architecture and Systems

• Chen Chang, John Wawrzynek, Robert W. Brodersen,
The Design And Application of BEE2, A High-End
Reconfigurable Computing System

• Heather Quinn, et. al., Terrestrial-based Radiation
Upsets: A Cautionary Tale

• Prasanna Sundararajan, Xilinx, Future Architectures and
Tools

22

Applications

• Data Stream processing
– hardware block on FPGA acquires sample from A/D or memory buffer
– data packet flows directly through processing pipeline
– processed data streamed to microprocessor or storage device

• Kernels of compute-intensive pipelines
– large floating point expression evaluated on FPGA
– input from microprocessor
– result back to microprocessor for further processing

• Library functions
– FFT
– BLAS

23

Application Design Principles

• Maximize parallelism
– multiple customized function units
– pipelining within function unit
– customized interconnect among function units

– systolic flow

• Maximize memory bandwidth
– application-controlled memory hierarchy
– on-chip

– flipflops in CLB configured to be part of a register
– Embedded on-chip RAM blocks, configurable in width/depth

– off-chip
– multiple SRAM banks
– DRAM

24

Data Stream Processing

Image Processing
Neighborhood Operations

Signal Processing
FIR Filter

•use on-chip memory (BRAM, registers)
•exploit maximum spatial parallelism
•exploit pipelining

25

Network Packet Processing

•Network packets flow from NI to FPGA
•FPGA circuits can match headers
•FPGA circuits can match content
•TCP-level packet assembly is difficult

26

Kernel Processing

•FPGA circuit for
innermost loop
•FP operators are
pipelined
•Expression eval is
pipelined

27

Libraries

• FFT “IP” modules have been implemented that
outperform older ASICs
– good performance as FFT is in data flow of signal processing

pipeline

• Star-P project - FPGA backend to accelerate Matlab
library routines
– performance depends on data communications costs, data re-

organization costs, Amdahl’s law

28

Applications Presentations

• Reid Porter, et. al.. A Reconfigurable Computing Framework for
Multi-scale Cellular Image Processing

• Daniel G. Chavarra, Miranda and David Chassin. A Hardware-
Accelerated Steady-State Power Flow Solver

• Chuan He, Guan Qinand and Wei Zhao, High-order Finite
Difference Seismic Modeling on Reconfigurable Computing Platform

• Zachary K. Baker and Viktor K. Prasanna, Hardware Accelerated
Apriori Algorithm for Data Mining

29

Design Tools and Compiling for FPGAs

• Select functions to run on FPGA

• Translate from algorithm to circuit

• Interface software and hardware

30

Design Cycle

Application has
a hardware and software
component.
Unlike SPMD model,
HW and SW perform
different functions.
HW and SW are compiled,
debugged differently, yet
must work together.

31

Levels of Description

• Algorithmic
– True software level of description
– Function calls, pointers, …

• Behavioral
– Describe behavior of a circuit
– Timing behavior is synthesized
– Alternative modules automatically chosen
– C = (A + A) * (B+C)

• RTL
– Registers, interconnection between registers is defined by programmer
– Timing behavior is defined by programmer
– Control structure is defined by programmer using state machine
– Synthesizer builds control logic for register transfers
– Seq(Par(T1 = B+C; T2 = A+A;) C = T1*T2)

• Structural
– Arithmetic or control modules explicitly instantiated
– Control behavior explicitly specified
– M1: adder(B, C, T1, clk, enable); M2: adder (a, a, T2,…); M3: mult(T1, T2, C,…)

32

Algorithmic Languages

• SRC Computer C/Fortran
– Tailored to SRC reconfigurable system
– Common language for hardware and

software
– Manual partitioning between sw/hw
– Automatic ILP extraction
– Manual memory hierarchy management
– Some capabilities for pipelining
– unrolling?

• Impulse C (Impulse Accelerated
Technologies), based on Streams-C
– Targeted to system on a programmable

chip (embedded processor)
– Multiple board support packages

– Common language for hardware and
software

– Manual partitioning between sw/hw
– Automatic ILP extraction
– Manual memory hierarchy management
– Automatic pipelining
– Unrolling?

• Catapult C (Mentor Graphics)
– Targets FPGA/ASIC chips
– Allows timing annotations to optimize

design

• Forge (Xilinx)
– Java compiler targets Xilinx FPGAs
– Manual partitioning
– Automatic ILP extraction
– Pipelining
– Unrolling?
– Manual memory hierarchy management

• Accelchip
– Matlab subset target gate level
– Manual partitioning
– Automatic ILP extraction
– No loop level pipelining
– Unrolling via directives
– Manual memory hierarchy management
– Provide hardware DSP libraries

33

High Level Graphical Languages

• Xilinx System Generator
– Targets Xilinx chip
– Matlab/Simulink interface
– Signal processing library
– Manual control over

timing
– Manual assembly of

operators
– Manual pipeline

synchronization

• Starbridge Viva
– Targets Starbridge system
– Ported to other boards
– Polymorphic modules
– Manual control over timing

through choice of operators
– Manual assembly of

operators
– Manual pipeline

synchronization
– Manual partitioning

34

Behavioral Languages - Hardware Description

• Behavioral Language characteristics
– Designer controls cycle-by-cycle behavior of parallel processes Compiler generates state

machine to sequence computation
– Manual ILP
– Manual pipelining
– Manual unrolling

• Celoxica Handel-C
– Proprietary C variant
– Compiler generates gate-level description
– Simulation/debug tools provided by Celoxica

• System C
– Embedded systems modeling language
– Synthesis compiler offered by several vendors (Synopsys, Celoxica)

• VHDL/Verilog
– Industry standard hardware description languages (HDL)
– Many choices of synthesizers
– Many choices of simulation/debug tools
– Same language is used for behavioral, Register Transfer Level (RTL), and structural.

35

Celoxica Handel-C

• Based on Communicating Sequential Processes model
– Independent parallel processes
– Processes communicate over synchronous channels
– Sender and receiver must arrive at synchronization point at same

time
– “par” construct to specify parallel computation blocks within a

process
– Well-defined timing model
– Each statement takes a single clock cycle

36

Embedding HDL in
General Purpose Language
• Programmatic generation

– Parameterized design trivial
– Built-in language features

– Looping
– Complex data structures
– File I/O
– Recursion

– Designed for interactive
module generation, design,
and test.

for (int I=0;I<64;I++)
 if (someFunCall(I))
 q[I] = regp(d[I]);
 else
 q[I] = reg(d[I]); + files of constants

+ branch/bound optimal searches
+ regular expression parsing

• Debug Environments
– Open circuit structure API.
– Extensible using inheritance to

tackle concepts like power
awareness and fault tolerance.

• Unified debug environment
– Simulation Hardware execution.

– Same environment
– Same testbenches

– Application built on top of debug
environment.

37

SystemC

• C++ Class Library
• System-level modeling of

– Software algorithm
– Hardware architecture
– Interfaces between communicating

entities

• Allows design space exploration
– Executable specification

• System is represented as a set of
interacting processes
– Cycle-based approach

• Supported data types include bit, bit
vector, fixed point,standard scalar
types, four-state logic with resolved
logic signals

• Synthesis compilers for SystemC now
available

• Module is the basis for encapsulation,
packaging

• Module contains processes

• Three types of processes
– Method process

– activation is triggered by event on input
signal (sensitivity list)

– Thread
– Co-routine behavior
– Can suspend (wait statement) and resume

– Clocked Thread
– Useful for more detailed specification,

yielding better synthesis results
– Activated on one edge of one clock
– Basis for state machine synthesis (with

wait statement)

System C Example: Module

SC_MODULE(transmit) {

sc_in<bool> clock; // input ports

sc_in<packet_type> tpackin;

sc_in<bool> timeout;

sc_out<packet_type> tpackout; // output ports

sc_inout<bool> start_timer;

int buffer;

void send_data();

 int get_data_from_app();

// Constructor

SC_METHOD(send_data);

sensitive << timeout; sensitive_pos << clock;

… buffer = get_data_from_app();

* Examples from SystemC User Manual

void transmit::send_data() {

if (timeout) { …

}

… else {

…

}

Timer

Transmit

Channel Receive

Process

communication

39

VHDL and Verilog

VHDL
• Sponsored by DoD
• Based on Ada, the DoD-mandated

software programming language
– Modularity constructs
– User-defined data types
– Entity/architecture

– Allows different implementation to
conform to an interface

• IEEE Std 1076-1987
• IEEE Std 1076-1993
• IEEE Std 1076.1-1999

– Analog and Mixed Signal extensions

Verilog

• Created in 1983-84 by Gateway
Design Automation

• Based on C, modula
– Concise, compact code

• IEEE Std-1364-1995

• IEEE Std-1364-2001
– Adds features such as multi-

dimensional arrays, generate

• IEEE Std-1364-AMS in progress

40

Compiling for Reconfigurable Systems

• Algorithmic/Behavioral
– Control/Dataflow analysis
– Dependency analysis and loop scheduling
– High level pipelining
– Target-independent expression-level optimizations
– Predication
– Operation selection
– Memory access scheduling
– Low level scheduling and pipelining
– State machine synthesis

• RTL
– Resource binding (function units, registers)

• Structural
– Gate-level code generation

• Mapping
– Gates are packed into (virtual) logic blocks of target FPGA

• Placement
– Virtual logic blocks are mapped to physical logic blocks

• Routing
– Connections between physical logic blocks assigned to routing resource on chip

41

Steps in Hardware Synthesis

• Predication
• If (a) then X else Y → [(a) X;

(~a) Y]
• Eliminates control flow
• Useful transformation for

convention microprocessors
also

• Operation selection
• Size, eg. 4/8/12/14/16 … 64 bit
• Data type, eg. [unsigned] int

or float
• Implementation, eg.

Combinational, pipelined, bit
serial, …

• Scheduling
• Transform the control/data

flow graph into a timed
execution flow

• Decide on operations that
occur at every clock cycle
• Function units
• Memory access
• Registers

• Specify finite state machine to
sequence through the sets of
operations at each clock cycle

• Synthesize pipelines for loops
that can be pipelined

42

Compiler Optimizations

• Universal optimizations
– Constant propagation
– Common sub-expression

elimination
– Induction variables and

strength reduction
– Dead code elimination
– Code motion for loop

invariants
– Resource sharing

• Parallelization optimization
– Fine grained parallelization
– Loop unrolling
– Loop pipelining

• Specialized optimizations
– Bit width analysis
– Fixed vs. floating point

representations
– Power reduction

43

Universal Optimizations

• Constant propagation
• C = 1; … C+D →
• C = 1; … 1 + D

• Common subexpression elimination
• A = C+D; B = E*(C+D) →
• A = C+D; B = E*A
• Strength reduction
• A*2 → A+A
• Dead code elimination
• A = 5 … A = 6 →
• A = 6
• Loop invariants
• for (I…) A = 10 →
• A = 10; for (I…)
• Resource sharing
• A = (B + C) * (D + E)
• two adders or one?

• Optimizations are applicable to
hardware and software

• Applicable to HDLs and HLLs

• Can be applied at different
levels
– Peephole
– Basic block
– subroutine
– program

44

Parallelization Optimizations

Fine grained parallelization

T1: A = 10; B = 5
T1: A = 10

T2: B = 5

Loop unrolling

For (I=1 to 4) A[I] = B[I]

T1:A[1]=B[1]

T1:A[2]=B[2]

T1:A[3]=B[3]

T1:A[4]=B[4]

Loop pipelining

For (I=1 to N) A[I] = f(B[I])

Ti:fetch A[I]

Ti:temp=f(A[I-1])

Ti:B[I-2]=temp

Steady state pipeline:

45

Logic Synthesis and Technology Mapping

• Circuit design: express gates
as boolean equation
– Minimize boolean equations
– Synthesize two-level, multi-

level circuits
– Minimize and synthesize

sequential logic (multiple clock
cycles)
– Optimize and synthesize finite

state machines

• Technology mapping: convert
logic circuit into equivalent one
that uses modules from a
particular library

• Match subject graph (circuit to
be mapped) onto pattern
graphs in the technology library

• NP-hard problem

46

Placement and Routing

• Placement
– Assign modules selected in

mapping phase to physical
modules on FPGA

– Generates a layout of the
design onto logic blocks on
FPGA

• Routing
– Assign paths between

modules to physical routing
resources on the chip

– Simulated annealing
optimization

47

Example

n=0

p=0

for i

 n = (K[i]*L[i]+M[i]*n)*O[i]

 p = n+p

• Many choices for instruction
level parallelism
– multiplies/adds in parallel

or sequential?
– area/speed tradeoff
– affects loop-level pipelining

– Number of clock cycles to
compute n & p
– affects clock speed

Pipeline Loop Alternatives
• Pipelined: One memory for all arrays
 Initiate a new loop iteration every 4 clock cycles.
 8 stage pipeline
Stage 0: Update array pointers; issue read of M
Stage 1: Increment i; issue read of K; save M in

register
Stage 2: temp1 = M*n; issue read of L; save K in

register
Stage 3: issue read of O; save L in register
Stage 4: temp2 = K*L; save O in register
Stage 5: temp3 = temp1 + temp2
Stage 6: n = temp3*O
Stage 7: p = p+n

• Pipelined: Four memories
• Initiate a new loop iteration every

2 clock cycles
• 6 stage pipeline
Stage 0: Issue reads of K, M, L, O
Stage 1: Increment i; save M, L, O

in registers
Stage 2: temp1 = K*L; temp2 = M*n
Stage 3:temp3 = temp1 + temp2
Stage 4: n = temp3*O
Stage 5: p = p+n

• Combinational: Four
memories

• Initiate a new loop iteration
every clock cycle

• 1 stage pipeline

Stage 0: Perform all multiplies
and add, store results in
registers

For XC2V2000-6

153/10752 slices

5/56 multipliers

66 MHz

131/10752 slices

3/56 multipliers

219 MHz

49

Schematic View from Synthesis

50

Schematic View from Place&Route

Pipeline controller

Datapath: adders/multipliers/registers

Sequence controller

Device speed data version: PRODUCTION 1.118 2004-03-12.
Device utilization summary:
Number of External IOBs 442 out of 624 70%
Number of LOCed External IOBs 0 out of 442 0%
Number of MULT18X18s 3 out of 56 5%
Number of SLICEs 131 out of 10752 1%
Number of BUFGMUXs 1 out of 16 6%
The AVERAGE CONNECTION DELAY for this design is: 1.217
The MAXIMUM PIN DELAY IS: 4.558
 The AVERAGE CONNECTION DELAY on the 10 WORST NETS is:4.005

51

Language/Compiler Summary

Mapping algorithms onto RCCs is a parallel
processing problem

 Languages for reconfigurable computers
range from high level C/Java to schematic to
hardware description languages

Compilers face a daunting task - extract
ILP, pipeline loops, unroll, trade-off
area/speed

Tool chain has many components
unfamiliar to software developers

52

Design Tools and Libraries

• Justin L. Tripp et. al. , Trident: An FPGA Compiler
Framework for Scientific Computing

• Keith D. Underwood and K. Scott Hemmert, Implications
of FPGAs for Floating-Point HPC Systems

