Personal tools
You are here: Home Publications Compact Application Signatures for Parallel and Distributed Scientific Codes
Document Actions

Charng-da Lu and Daniel A Reed (ed.) (2002)

Compact Application Signatures for Parallel and Distributed Scientific Codes

Proceedings of SC2002 High Performance Computing, Networking, and Storage Conference.

Understanding the dynamic behavior of parallel programs is key to developing efficient system software and runtime environments; this is even more true on emerging computational Grids where resource availability and performance can change in unpredictable ways. Event tracing provides details on behavioral dynamics, albeit often at great cost. We describe an intermediate approach, based on curve fitting, that retains many of the advantages of event tracing but with lower overhead. These compact “application signatures” summarize the time-varying resource needs of scientific codes from historical trace data. We also developed a comparison scheme that measures similarity between two signatures, both across executions and across execution environments.

by admin last modified 2007-12-10 21:05
« September 2010 »
Su Mo Tu We Th Fr Sa
1234
567891011
12131415161718
19202122232425
2627282930
 

Powered by Plone

LACSI Collaborators include:

Rice University LANL UH UNM UIUC UNC UTK