Personal tools
You are here: Home Publications Pattern Search Algorithms for Mixed Variable Programming
Document Actions

Charles Audet and Jr J Dennis (2000)

Pattern Search Algorithms for Mixed Variable Programming

SIAM Journal on Optimization, Volume 11(3):pp. 573-594.

Many engineering optimization problems involve a special kind of discrete variable that can be represented by a number, but this representation has no significance. Such variables arise when a decision involves some situation like a choice from an unordered list of categories. This has two implications: The standard approach of solving problems with continuous relaxations of discrete variables is not available, and the notion of local optimality must be defined through a user-specified set of neighboring points. We present a class of direct search algorithms to provide limit points that satisfy some appropriate necessary conditions for local optimality for such problems. We give a more expensive version of the algorithm that guarantees additional necessary optimality conditions. A small example illustrates the differences between the two versions. A real thermal insulation system design problem illustrates the efficacy of the user controls for this class of algorithms.

by admin last modified 2007-12-10 21:05
« September 2010 »
Su Mo Tu We Th Fr Sa
1234
567891011
12131415161718
19202122232425
2627282930
 

Powered by Plone

LACSI Collaborators include:

Rice University LANL UH UNM UIUC UNC UTK