Personal tools
You are here: Home Publications Filter Pattern Search Algorihtms for Mixed Variable Constrained Optimization Problems
Document Actions

Mark A Abramson, Charles Audet, and Jr J Dennis (2004)

Filter Pattern Search Algorihtms for Mixed Variable Constrained Optimization Problems

Rice University, Department of Computational and Applied Mathematics, 6100 Main Street, Houston, TX 77005.

A new class of algorithms for solving nonlinearly constrained mixed variable optimization problems is presented. This class combines and extends the Audet-Dennis Generalized Pattern Search (GPS) algorithms for bound constrained mixed variable optimization, and their GPS-filter algorithms for general nonlinear constraints. In generalizing existing algorithms, new theoretical convergence results are presented that reduce seamlessly to existing results for more specific classes of problems. While no local continuity or smoothness assumptions are required to apply the algorithm, a hierarchy of theoretical convergence results based on the Clarke calculus is given, in which local smoothness dictate what can be proved about certain limit points generated by the algorithm. To demonstrate the usefulness of the algorithm, the algorithm is applied to the design of a load-bearing thermal insulation system. We believe this is the first algorithm with provable convergence results to directly target this class of problems.

by admin last modified 2007-12-10 21:05
« September 2010 »
Su Mo Tu We Th Fr Sa
1234
567891011
12131415161718
19202122232425
2627282930
 

Powered by Plone

LACSI Collaborators include:

Rice University LANL UH UNM UIUC UNC UTK